## Not run:
# # Data
# data(calgb)
# attach(calgb)
# y <- cbind(Z1,Z2,Z3,T1,T2,B0,B1)
# x <- cbind(CTX,GM,AMOF)
#
# z <- cbind(y,x)
#
# # Data for prediction
# data(calgb.pred)
# xpred <- as.matrix(calgb.pred[,8:10])
#
#
# # Prior information
# prior <- list(pe1=0.1,
# pe0=0.1,
# ae=1,
# be=1,
# a0=rep(1,3),
# b0=rep(1,3),
# nu=12,
# tinv=0.25*var(z),
# m0=apply(z,2,mean),
# S0=var(z),
# nub=12,
# tbinv=var(z))
#
#
# # Initial state
# state <- NULL
#
# # MCMC parameters
#
# mcmc <- list(nburn=5000,
# nsave=5000,
# nskip=3,
# ndisplay=100)
#
# # Fitting the model
# fit1 <- HDPMcdensity(formula=y~x,
# study=~study,
# xpred=xpred,
# prior=prior,
# mcmc=mcmc,
# state=state,
# status=TRUE)
#
# # Posterior inference
# fit1
# summary(fit1)
#
# # Plot the parameters
# # (to see the plots gradually set ask=TRUE)
# plot(fit1,ask=FALSE)
#
# # Plot the a specific parameters
# # (to see the plots gradually set ask=TRUE)
# plot(fit1,ask=FALSE,param="eps",nfigr=1,nfigc=2)
#
# # Plot the measure for each study
# # under first values for the predictors, xpred[1,]
# predict(fit1,pred=1,i=1,r=1) # pred1, study 1
# predict(fit1,pred=1,i=2,r=1) # pred1, study 2
#
# # Plot the measure for each study
# # under second values for the predictors, xpred[2,]
# predict(fit1,pred=2,i=1,r=1) # pred2, study 1
# predict(fit1,pred=2,i=2,r=1) # pred2, study 2
#
# # Plot the idiosyncratic measure for each study
# # under first values for the predictors, xpred[1,]
# predict(fit1,pred=1,i=1,r=0) # study 1
# predict(fit1,pred=1,i=2,r=0) # study 2
#
# # Plot the common measure
# # under first values for the predictors, xpred[1,]
# predict(fit1,pred=1,i=0)
# ## End(Not run)
Run the code above in your browser using DataLab