# 1. Define comprehensive sample data and metadata
Meta_data <- data.frame(
stringsAsFactors = FALSE,
VARIABLE = c(
"ID", "Gender", "Age", "Has_Job", "Job_Title",
"Job_Satisfaction", "Last_Promotion_Year", "Has_Insurance",
"Insurance_Provider", "Annual_Checkup"
),
VARIABLE_Code = 1:10,
Var_order = 1:10,
Segment_Names = c(
"Demographic", "Demographic", "Demographic", "Employment", "Employment",
"Employment", "Employment", "Health", "Health", "Health"
),
Dependency = c(0, 0, 0, 0, 4, 5, 5, 0, 8, 8),
Dep_Value = c(
"0", "0", "0", "0", "Yes", "ANY", "ANY", "0", "Yes", "Yes"
)
)
Source_data <- data.frame(
ID = 1:10,
Gender = c("Male", NA, "Male", "Female", "Male","Female", "Male", "Female", "Male", "Female"),
Age = c(25, NA, 31, 55, 29, 38, 45, 22, 60, 33),
Has_Job = c("Yes", NA, "No", "Yes", "Yes", "No", "Yes", "Yes", "No", "Yes"),
Job_Title = c(NA, NA, NA, "Analyst", NA, "Student","Director", "Engineer", NA, "Designer"),
Job_Satisfaction = c(5, NA, NA, 8, 7, NA, 10, 9, NA, 6),
Last_Promotion_Year = c(2020,NA , 2021, NA, NA, NA, 2024, 2022, NA, 2023),
Has_Insurance = c("Yes", NA, "Yes", "Yes", "No", "Yes", "Yes", "No", "No", "Yes"),
Insurance_Provider = c("Provider A", NA, "Provider B", "Provider C","Provider D", NA, "Provider E",
NA, NA, "Provider F"),
Annual_Checkup = c("Yes", NA, "No", "Yes", NA, "Yes", "Yes", "No", NA, "Yes")
)
# 4. Run the row-wise check with plot
row_report <- check_missing_record(
S_data = Source_data, M_data = Meta_data, skip_vars = "ID", Show_Plot = TRUE
)
print(row_report)
Run the code above in your browser using DataLab