Learn R Programming

DRquality (version 0.2.1)

PrecisionAndRecall: Precision and Recall.

Description

Trade-off between missing similar points versus retrieving dissimilar points.

Usage

PrecisionAndRecall(Data, pData, NeighborhoodSize = 20)

Value

Numeric matrix [1:NeighborhoodSize, 1:2] containing the precision values in the first column and the recall values in the second column of the matrix.

Arguments

Data

[1:n,1:d] points in input room with d attributes

pData

[1:n,1:2] projected points in output room, with index,x,y or index,line,column

NeighborhoodSize

Sets the 'effective number of neighbors' used to control the width of the Gaussian, NeRV paper Seite 463 setzt Default auf 20

Author

Felix Pape

Examples

Run this code
# \donttest{
if(requireNamespace("FCPS")){
data(Hepta,package="FCPS")
projection=cmdscale(dist(Hepta$Data), k=2)
PrecisionAndRecall(Hepta$Data,projection)
}
# }
# \dontshow{
n=100
Data=cbind(rnorm(100),rnorm(100,2,3))
PrecisionAndRecall(Data,cbind(runif(n),runif(n)))
# }

Run the code above in your browser using DataLab