DPPC: Distributed Probabilistic Principal Component Analysis
Description
Performs distributed probabilistic principal component analysis (PPC)
on a numeric dataset split across multiple nodes. Estimates loading matrices,
residual variances, and covariance matrices for each node using a probabilistic approach.
Usage
DPPC(data, m, n1, K)
Value
A list with the following components:
Apro
List of estimated loading matrices for each node.
Dpro
List of diagonal residual variance matrices for each node.
Sigmahatpro
List of covariance matrices for each node.
Arguments
data
A numeric matrix containing the total dataset.
m
An integer specifying the number of principal components.
n1
An integer specifying the length of each data subset.