DSPC: Distributed Sparse Principal Component Analysis
Description
Performs distributed sparse principal component analysis (DSPC)
on a numeric dataset split across multiple nodes. Estimates sparse loading matrices,
residual variances, and covariance matrices for each node.
Usage
DSPC(data, m, gamma, n1, K)
Value
A list with the following components:
Aspro
List of sparse loading matrices for each node.
Dspro
List of diagonal residual variance matrices for each node.
Sigmahatpro
List of covariance matrices for each node.
Arguments
data
A numeric matrix containing the total dataset.
m
An integer specifying the number of principal components.
gamma
A numeric value specifying the sparsity parameter for SPC.
n1
An integer specifying the length of each data subset.