Learn R Programming

DSWE (version 1.8.4)

Data Science for Wind Energy

Description

Data science methods used in wind energy applications. Current functionalities include creating a multi-dimensional power curve model, performing power curve function comparison, covariate matching, and energy decomposition. Relevant works for the developed functions are: funGP() - Prakash et al. (2022) , AMK() - Lee et al. (2015) , tempGP() - Prakash et al. (2022) , ComparePCurve() - Ding et al. (2021) , deltaEnergy() - Latiffianti et al. (2022) , syncSize() - Latiffianti et al. (2022) , imptPower() - Latiffianti et al. (2022) , All other functions - Ding (2019, ISBN:9780429956508).

Copy Link

Version

Install

install.packages('DSWE')

Monthly Downloads

338

Version

1.8.4

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Yu Ding

Last Published

October 11th, 2025

Functions in DSWE (1.8.4)

KnnPredict

KNN : Predict
SvmPCFit

SVM based power curve modelling
updateData.tempGP

Update the data in a tempGP object
updateData

Updating data in a model
deltaEnergy

Energy decomposition for wind turbine performance comparison
funGP

Function comparison using Gaussian Process and Hypothesis testing
data1

Wind Energy data set containing 47,542 data points
XgbPCFit

xgboost based power curve modelling
data2

Wind Energy data set containing 48,068 data points
syncSize

Data synchronization
tempGP

temporal Gaussian process
ComparePCurve

Power curve comparison
KnnUpdate

KNN : Update
ComputeWeightedDifference

Percentage weighted difference between power curves
CovMatch

Covariate Matching
AMK

Additive Multiplicative Kernel Regression
SplinePCFit

Smoothing spline Anova method
KnnPCFit

KNN : Fit
predict.tempGP

predict from temporal Gaussian process
imptPower

Power imputation