Learn R Programming

DTA (version 2.18.0)

DTA.dynamic.estimate: Estimation of synthesis and decay rates upon perturbation

Description

DTA.dynamic.estimate uses an experiment, given by a phenotype matrix, data matrix and the number of uridines for each gene to estimate synthesis and decay rate of the genes.

Usage

DTA.dynamic.estimate(phenomat = NULL,datamat = NULL,tnumber = NULL,ccl = NULL,mRNAs = NULL,reliable = NULL,mediancenter = TRUE,usefractions = "LandT",LtoTratio = NULL,ratiomethod = "tls",largest = 5,weighted = TRUE,relevant = NULL,check = TRUE,error = TRUE,samplesize = 1000,confidence.range = c(0.025,0.975),bicor = TRUE,condition = "",upper = 700,lower = 500,save.plots = FALSE,resolution = 1,folder = NULL,fileformat = "jpeg",totaloverwt = 1,sr.vs.dr.folds.lims = c(-5,5),te.vs.to.folds.lims = c(-6,6),robust = FALSE,clusters = "sr",ranktime = NULL,upperquant = 0.8,lowerquant = 0.6,notinR = FALSE,RStudio = FALSE,simulation = FALSE,sim.object = NULL)

Arguments

phenomat
A phenotype matrix, containing the design of the experiment as produced by DTA.phenomat. Columns are name, fraction (U=unlabebeld, L=labeled, T=total), time and nr (=replicate number). Rows represent individual experiments.
datamat
A matrix, containing the measurements from U, L and T, according to the design given in phenomat. Matrix should only contain the rows of phenomat as columns.
tnumber
Integer vector, containing the numbers of uridines. Elements should have the rownames of datamat.
ccl
The cell cycle length of the cells.
mRNAs
Estimated number of mRNAs in a cell (optional).
reliable
Vector of 'reliable' genes, which are used for parameter estimation.
mediancenter
Should the quotient Labeled/Total resp. Unlabeled/Total be rescaled to a common median over it's replicates before building the genewise median.
usefractions
From which fractions should the decay rate be calculated: "LandT", "UandT" or "both".
LtoTratio
Coefficient to rescale Labeled/Total. Is estimated from the data, if not specified. See ratiomethod.
ratiomethod
Choose the regression method to be used, possible methods are: "tls", "bias" and "lm". For details, see supplemental material of Sun et al. (see references).
largest
Percentage of largest residues from the first regression not to be used in the second regression step. For details, see supplemental material of Sun et al. (see references).
weighted
Should the regression be weighted with 1/(Total^2 + median(Total))?
relevant
Choose the arrays to be used for halflives calculation, vector due to nr (=replicate number) in phenomat.
check
If check = TRUE, control messages and plots will be generated.
error
If TRUE, the measurement error is assessed by means of an error model and resampling to gain confidence regions.
samplesize
Error model samplesize for resampling.
confidence.range
Confidence region for error model as quantiles. Interval should be between 0 and 1.
bicor
Should the labeling bias be corrected?
condition
String, to be added to the plotnames.
upper
Upper bound for labeling bias estimation. For details, see supplemental material of Sun et al. (see references).
lower
Lower bound for labeling bias estimation. For details, see supplemental material of Sun et al. (see references).
save.plots
If save.plots = TRUE, control plots will be saved.
resolution
Resolution scaling factor for plotting.
folder
Path to the folder, where to save the plots.
fileformat
Fileformat for plots to be saved. See plotit function (LSD package).
totaloverwt
Will be available in the very near future for comparative DTA data.
sr.vs.dr.folds.lims
Limits of the folds plot (dr vs sr).
te.vs.to.folds.lims
Limits of the folds plot (LT vs LE).
robust
If robust = TRUE, LE resp. LT is chosen instead of sr resp. dr.
clusters
should the dr vs sr folds be plotted with clusters, choose 'sr', 'dr' for cluster selection or 'none' to omit it
ranktime
at which time should the rankgain be calculated, default is the last column
upperquant
upper quantile for cluster selection
lowerquant
lower quantile for cluster selection
notinR
Should plots be not plotted in R.
RStudio
For RStudio users. Suppresses the opening of a new device, as RStudio allows only one.
simulation
True, if data was generated by DTA.generate.
sim.object
Simulation object created by DTA.generate.

Value

DTA.dynamic.estimate returns a list, where each entry contains the estimation results for all replicates of one timecourse timepoint. Each result contains the following entries
triples
Mapping of each fraction and experiment to its corresponding column in the data matrix.
plabel
The labeling efficiency. For details, see the vignette.
LtoTratio
Estimated ratio of labeled to total fraction.
UtoTratio
Estimated ratio of unlabeled to total fraction.
LtoUratio
Estimated ratio of labeled to unlabeled fraction.
correcteddatamat
Labeling bias corrected data matrix.
drmat
Decay rates for each replicate. The last column gives the median decay rates.
dr
Median decay rates. The last column of drmat.
dr.confidence
Confidence regions of decay rates.
hlmat
Half-lives for each replicate. The last column gives the median half-lifes.
hl
Median half-lives. The last column of hlmat.
hl.confidence
Confidence regions of half-lives.
TEmat
Total expression for each replicate. The last column gives the median total expression values.
TE
Median total expression values. The last column of TEmat.
TE.confidence
Confidence regions of total expression values.
LEmat
Labeled expression for each replicate. The last column gives the median labeled expression values.
LE
Median labeled expression values. The last column of LEmat.
LE.confidence
Confidence regions of labeled expression values.
UEmat
Unlabeled expression for each replicate. The last column gives the median unlabeled expression values. (Only if unlabeled values exist in the experiment)
UE
Median unlabeled expression values. The last column of UEmat. (Only if unlabeled values exist in the experiment)
UE.confidence
Confidence regions of unlabeled expression values.
srmat
Synthesis rates for each replicate. The last column gives the median synthesis rates.
sr
Median synthesis rates. The last column of srmat.
sr.confidence
Confidence regions of synthesis rates.
LtoTmat
Labeled to total ratio for each replicate. The last column gives the median labeled to total ratios.
LtoT
Median labeled to total ratios. The last column of LtoTmat.
LtoT.confidence
Confidence regions of labeled to total ratios.
UtoTmat
Unlabeled to total ratio for each replicate. The last column gives the median unlabeled to total ratios.
UtoT
Median unlabeled to total ratios. The last column of UtoTmat.
UtoT.confidence
Confidence regions of unlabeled to total ratios.
Rsrmat
Rescaled synthesis rates for each replicate, if parameter mRNAs is specified. The last column gives the median synthesis rates.
Rsr
Rescaled median synthesis rates. The last column of Rsrmat.
globaldrmat
Decay rate for each replicate. Reciprocally weighted by the total expression. Last element contains (weighted) median decay rate.
globaldr
(Weighted) median decay rate.

References

C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Doelken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011. M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review. B. Schwalb, B. Zacher, S. Duemcke, D. Martin, P. Cramer, A. Tresch. Measurement of genome-wide RNA synthesis and decay rates with Dynamic Transcriptome Analysis (DTA/cDTA). Bioinformatics.

See Also

heatscatter, plotit, tls

Examples

Run this code
dataPath = system.file("data", package="DTA")
load(file.path(dataPath, "Miller2011dynamic.RData"))

### for control plots set 'check = TRUE' ###

res = DTA.dynamic.estimate(Sc.phenomat.dynamic,Sc.datamat.dynamic,Sc.tnumber,ccl = 150,mRNAs = 60000,reliable = Sc.reliable.dynamic,LtoTratio = rep(0.1,7),check = FALSE)

Run the code above in your browser using DataLab