Learn R Programming

DTA (version 2.18.0)

DTA.dynamic.generate: Simulation of DTA experiments upon perturbation

Description

DTA.dynamic.generate produces the phenotype matrix and the matrix containing the simulated data according to the given parameters.

Usage

DTA.dynamic.generate(duration = 60,lab.duration = 6,tnumber = NULL,plabel = NULL,nrgenes = 5000,mediantime.halflives = 12,mediantime.synthesisrates = 18,n = 1,ccl = NULL,check = TRUE,plots = FALSE,save.plots = FALSE,folder = NULL,condition = "",addformat = NULL,sdnoise = 0.075,nobias = FALSE,unspecific.LtoU = 0,unspec.LtoU.weighted = FALSE,unspecific.UtoL = 0,unspec.UtoL.weighted = FALSE,mu.values.mat = NULL,mu.breaks.mat = NULL,lambda.values.mat = NULL,lambda.breaks.mat = NULL,truehalflives = NULL,truesynthesisrates = NULL,genenames = NULL)

Arguments

duration
duration of the whole time course (min)
lab.duration
labeling duration for single experiments (min)
tnumber
Integer vector containing the number of uridine residues for each gene. If NULL, tnumber is sampled from an F-distribution within the function.
plabel
The labeling efficiency. If NULL, plabel is set to 0.005 within the function. For details, see supplemental material of Sun et al. (see references).
nrgenes
The number of genes the simulated experiment will have (will be cropped if it exceeds the length of tnumber).
mediantime.halflives
the median of the half life distribution
mediantime.synthesisrates
the median of the synthesis rates distribution (counts/cell/cellcycle)
n
the number of cells N(0)
ccl
The cell cycle length (in minutes).
check
if check=TRUE, control messages will be generated
plots
if plots = TRUE, control plots will be plotted
save.plots
if save.plots = TRUE, control plots will be saved
folder
folder, where to save the plots
condition
to be added to the plotnames
addformat
additional fileformat for plots to be saved
sdnoise
The amount of measurement noise (proportional to expression strength).
nobias
Should a labeling bias be added?
unspecific.LtoU
Proportion of labeled RNAs that unspecifically end up in the unlabeled fraction.
unspec.LtoU.weighted
Should unspecific proportion of labeled to unlabeled depend linearly on the length of the RNA?
unspecific.UtoL
Proportion of unlabeled RNAs that unspecifically end up in the labeled fraction.
unspec.UtoL.weighted
Should unspecific proportion of unlabeled to labeled depend linearly on the length of the RNA?
mu.values.mat
if the data should be generated using given synthesis rates, this matrix must contain the respective values for each gene
mu.breaks.mat
timepoints of synthesis rate changes, this matrix must contain the respective values for each gene, only needed when mu.values.mat is given (one column less than mu.values.mat)
lambda.values.mat
if the data should be generated using given decay rates, this matrix must contain the respective values for each gene
lambda.breaks.mat
timepoints of decay rate changes, this matrix must contain the respective values for each gene, only needed when lambda.values.mat is given (one column less than lambda.values.mat)
truehalflives
If the data should be generated using a given half-life distribution, this vector must contain the respective values for each gene.
truesynthesisrates
If the data should be generated using a given synthesis rates distribution, this vector must contain the respective values for each gene
genenames
An optional list of gene names.

Value

DTA.dynamic.generate returns a list, containing the following entries
phenomat
A matrix, containing the design of the experiment as produced by DTA.phenomat.
datamat
A matrix, containing the simulated measurements from U, L and T, according to the design given in phenomat.
tnumber
Integer vector containing the number of uridine residues for each gene.
ccl
The cell cycle length (in minutes).
truemus
A vector, containing the true synthesis rates.
truemusaveraged
A vector, containing the true synthesis rates, averaged over the labeling period.
truelambdas
A vector, containing the true decay rates.
truelambdasaveraged
A vector, containing the true decay rates, averaged over the labeling period.
truehalflives
A vector, containing the true half-lives.
truehalflivesaveraged
A vector, containing the true half-lives, averaged over the labeling period.
trueplabel
The true labeling efficiency. For details, see supplemental material of Sun et al. (see references).
truecomplete
A vector, containing the true amount of total RNA.
truelambdas
A vector, containing the true decay rates.
truemus
A vector, containing the true synthesis rates.
truehalflives
A vector, containing the true half-lives.
trueplabel
The true labeling efficiency. For details, see supplemental material of Miller et al. (see references).
truear
The true parameter ar. For details, see supplemental material of Miller et al. (see references).
truebr
The true parameter br. For details, see supplemental material of Miller et al. (see references).
truecr
The true parameter cr. For details, see supplemental material of Miller et al. (see references).
truecrbyar
The true parameter cr/ar. For details, see supplemental material of Miller et al. (see references).
truecrbybr
The true parameter cr/br. For details, see supplemental material of Miller et al. (see references).
truebrbyar
The true parameter br/ar. For details, see supplemental material of Miller et al. (see references).
trueLasymptote
The true parameter asymptote (labeled bias). For details, see supplemental material of Miller et al. (see references).
trueUasymptote
The true parameter asymptote (unlabeled bias). For details, see supplemental material of Miller et al. (see references).

References

C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Dolken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011. M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review. B. Schwalb, B. Zacher, S. Duemcke, D. Martin, P. Cramer, A. Tresch. Measurement of genome-wide RNA synthesis and decay rates with Dynamic Transcriptome Analysis (DTA/cDTA). Bioinformatics.

Examples

Run this code
nrgenes = 5000
truesynthesisrates = rf(nrgenes,5,5)*18
steady = rep(1,nrgenes)
shock = 1/pmax(rnorm(nrgenes,mean = 8,sd = 4),1)
induction = pmax(rnorm(nrgenes,mean = 8,sd = 4),1)
changes.mat = cbind(steady,shock,shock*induction)
mu.values.mat = changes.mat*truesynthesisrates
mu.breaks.mat = cbind(rep(12,nrgenes),rep(18,nrgenes))
truehalflives = rf(nrgenes,15,15)*12
truelambdas = log(2)/truehalflives
changes.mat = cbind(steady,shock,shock*induction,steady)
lambda.values.mat = changes.mat*truelambdas
lambda.breaks.mat = cbind(rep(12,nrgenes),rep(18,nrgenes),rep(27,nrgenes))

### it takes several min to build sim.object (depends on the number of genes 'nrgenes') ###

sim.object = DTA.dynamic.generate(duration = 36,lab.duration = 6,nrgenes = nrgenes,mu.values.mat = mu.values.mat,mu.breaks.mat = mu.breaks.mat,lambda.values.mat = lambda.values.mat,lambda.breaks.mat = lambda.breaks.mat)

### for control plots set 'check = TRUE' ###

res = DTA.dynamic.estimate(simulation = TRUE,sim.object = sim.object,check = FALSE)

Run the code above in your browser using DataLab