# NOT RUN {
# FUNCTION USED WITH DEFAULT ARGUMENTS
data(Anti_CCP)
Forest(Anti_CCP)
# CONFIDENCE INTERVAL BASED ON THE NORMAL APPROXIMATION METHOD
Forest(Anti_CCP, conf.int = "Normal.approx")
# SET THE SENSITIVITY & SPECIFICITY X-AXES FROM 0 TO 1 INSTEAD
Forest(Anti_CCP, se.axis = c(0,1), sp.axis = c(0,1) )
# PROVIDE STUDY LABELS
Forest(Anti_CCP, study=Anti_CCP$Study)
# To display the sensitivity and specificity summary point estimates previously obtained
# from a Bayesian bivariate meta-analysis model.
data(posterior_samples_Bivariate)
Summary_Se = median(posterior_samples_Bivariate[,1])
Summary_Se_low = quantile(posterior_samples_Bivariate[,1], prob=0.025)
Summary_Se_up = quantile(posterior_samples_Bivariate[,1], prob=0.975)
Summary_Sp = median(posterior_samples_Bivariate[,2])
Summary_Sp_low = quantile(posterior_samples_Bivariate[,2], prob=0.025)
Summary_Sp_up = quantile(posterior_samples_Bivariate[,2], prob=0.975)
Forest(Anti_CCP, study=Anti_CCP$Study, summary = cbind(Summary_Se, Summary_Se_low, Summary_Se_up,
Summary_Sp, Summary_Sp_low, Summary_Sp_up))
# Random summary point estimates generated for illustrative example
n = 5 # Simulate summary point estimates coming from 5 different models
Summary_Se = runif(n, 0.5,0.6)
Summary_Se_low = runif(n, 0.4, 0.5)
Summary_Se_up = runif(n, 0.6,0.7)
Summary_Sp =runif(n, 0.9,0.95)
Summary_Sp_low = runif(n, 0.85,0.9)
Summary_Sp_up = runif(n, 0.95,1)
Forest(Anti_CCP, study=Anti_CCP$Study, summary = cbind(Summary_Se, Summary_Se_low, Summary_Se_up,
Summary_Sp, Summary_Sp_low, Summary_Sp_up), summary_label=c("Summary estimate 1",
"Summary estimate 2", "Summary estimate 3", "Summary estimate 4", "Summary estimate 5"))
# }
Run the code above in your browser using DataLab