# NOT RUN {
##############################################################################################
# The example requires the rjags output from a bivariate meta-analysis model.
# We use the posterior_samples_Bivariate dataset which contains the results of a
# bivariate meta-analysis of Anti_CCP dataset.
#The number of studies
data(Anti_CCP)
n=dim(Anti_CCP)[1]
#We load the samples of the posterior distribution
data(posterior_samples_Bivariate)
# Summary plot
SROC_rjags(X=posterior_samples_Bivariate, model="Bivariate",n=n, study_col1="blue",
study_col2=rgb(0, 0, 1, 0.15), dataset=Anti_CCP[,2:5], ref_std=TRUE)
##########################################################################################
# The example requires the rjags output from a HSROC meta-analysis model.
# We use the posterior_samples_HSROC dataset which contains the results of a
# HSROC meta-analysis of the Anti_CCP dataset.
#The number of studies
data(Anti_CCP)
n=dim(Anti_CCP)[1]
#We load the samples of the posterior distribution
data(posterior_samples_HSROC)
# Summary plot
SROC_rjags(X=posterior_samples_HSROC, model="HSROC",n=n, study_col1="blue",
study_col2=rgb(0, 0, 1, 0.15), dataset=Anti_CCP[,2:5], ref_std=TRUE,
SROC_curve = TRUE, cred_region = FALSE, predict_region = FALSE)
##########################################################################################
# The example requires the rjags output from a Bayesian latent class meta-analysis model.
# We use the posterior_samples_LC dataset which contains the results of a
# latent class meta-analysis of the Xpert dataset.
#The number of studies
data(Xpert)
n=dim(Xpert)[1]
#We load the samples of the posterior distribution
data(posterior_samples_LC)
# Summary plot
SROC_rjags(X=posterior_samples_LC, model="Bivariate",n=n, study_col1="blue",
study_col2=rgb(0, 0, 1, 0.15), dataset=Xpert[,2:5], ref_std=FALSE)
# }
Run the code above in your browser using DataLab