Plearning(X,AA,RR,n,K,pi,pentype = "lasso",kernel ="linear",
sigma=c(0.03,0.05,0.07),clinear=2^(-2:2),m=4,e=1e-05)
A[[i]]
is the treatment assignment vector for stage i.R[[i]]
is the outcome vector for stage i.wsvm
wsvm
, see also Olearning_Single
'linear'
, can also be 'rbf'
'rbf'
is chosen for kernel, the grid of sigma to serach by cross validation.Olearning_Single
, Qlearning_Single
n_cluster=10
pinfo=10
pnoise=20
example2=make_2classification(n_cluster,pinfo,pnoise,200)
test=make_2classification(n_cluster,pinfo,pnoise,200,example2$centroids)
pi=list()
pi[[2]]=pi[[1]]=rep(1,200)
modelP=Plearning(example2$X,example2$A,example2$R,200,2,pi)
Run the code above in your browser using DataLab