Learn R Programming

DWaveNARDL (version 0.1.0)

NARDL: Dual Wavelet-based NARDL Model

Description

This function implements the Dual Wavelet-based Nonlinear Autoregressive Distributed Lag (NARDL) model.

Usage

NARDL(Data, Exo, MaxLag, Trend = TRUE)

Value

A list containing:

Coefficients

Model coefficients (short and long run).

AsymTest

Wald test statistics and p-values.

IC

Information criteria (AIC, BIC, Log-likelihood).

Arguments

Data

A time series object (numeric vector) representing the dependent variable.

Exo

A time series object (numeric vector) representing the exogenous variable.

MaxLag

Maximum number of lags to consider.

Trend

Boolean to include trend in the model. Default is TRUE.

References

Jammazi, R., Lahiani, A., & Nguyen, D. K. (2015). A wavelet-based nonlinear ARDL model for assessing the exchange rate pass-through to crude oil prices. *Journal of International Financial Markets, Institutions and Money, 34*, 173-187. https://doi.org/10.1016/j.intfin.2014.11.011

Examples

Run this code
Data <- rnorm(100)
Exo <- rnorm(100)
Results <- NARDL(Data, Exo, MaxLag = 3)

Run the code above in your browser using DataLab