Mean and variance of a discrete Weibull distribution with parameters q and beta.
Usage
dw.meanvar(q,beta,M)
Arguments
q,beta
Parameters of the distribution
M
Maximum value of the summation. Default value is 1000.
Value
The function returns the mean and variance of a DW distribution with parameters q and beta.
Details
The mean and variance are computed using the following approximations:
$$E(X)=\sum_{k=1}^{M} q^{k^{\beta}}$$
$$E(X^2)=\sum_{k=1}^{M} (2k-1)q^{k^{\beta}} = 2\sum_{k=1}^{M} kq^{k^{\beta}}-E(X)$$
References
Khan M, Khalique A, Abouammoth A. On estimating parameters in a discrete Weibull distribution. IEEE transactions on Reliability 1989; 38(3):348-350.