Learn R Programming

Dark (version 0.9.4)

BootDark: BootDark

Description

A script using bootstrap techniques to calculate confidence intervals for parameter estimates from a 'dark' object.

Usage

BootDark(obj, R, graph, progress = F)

Arguments

obj
A 'dark' object.
R
The number of repeats for the bootstrap calculations.
graph
A flag to indicate whether a figure should be drawn.
progress
A flag to indicate whether a progress bar should be drawn to the console. This might be preferred if using a large number of repeats.

Value

  • Returns a list 'out'
  • out$timetimes of observations
  • out$thrsthresholds
  • out$optoptimised parameter estimates
  • out$Modthe name of the optimal model
  • out$Pnnumber of parameters needed to describe the data
  • out$AICthe AICc scores for the three models
  • out$fitfitted values for the optimal parameter estimates
  • out$resdresiduals of the best fits
  • out$R2the coefficient of determination
  • out$Bootstrapbootstrap parameter estimates, 2.5%, 50% and 97.5%
  • out$weightthe reciprocal of the CI
  • out$validnn indication whether the parameter estimate is valid
  • out$datathe source of the data
  • out$callupdates the call label on the object

Details

The script calculates bootstrap estimates of confidence intervals by sampling the residuals without replacement. The seven parameter model 'P7c' is always used. If 'P3' or 'P5c' have been found elsewhere to be a better fit then this will be confirmed by bootstrapping the 'P7c' model.

References

B. Efron. Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7(1):1-26, 1979.

B. Efron. Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods. Biometrika, 68(3):589, 1981.

Examples

Run this code
set.seed(1234)
Time<- seq(0,20)
tmp<- TestData(Time)
P<-Start(tmp,1000)
MSC<-ModelSelect(tmp, P)
tmp2<-BestFit(tmp, MSC)
tmp3<-MultiStart(tmp2,100)
BootDark(tmp3,150)

Run the code above in your browser using DataLab