Learn R Programming

Dark (version 0.9.4)

MultiStart: MultiStart

Description

Given a dark object, obj, this function repeatedly optimises the parameters in the vicinity of the seed array. The width of the search is dependent upon the value of spread.

Usage

MultiStart(obj, repeats, draw, spread, debug)

Arguments

obj
A dark object containing at least;ll{ obj$time time obj$thrs thresholds obj$init an initial estimate of the parameters of dark adaptation. }
repeats
The number of times the algorithm is repeated
draw
A flag indicating whether a figure should be drawn.
spread
The amount by which the seed array should be varied. A larger value gives a greater range of possible starting points.
debug
A flag used in debugging the software.

Value

  • Returns a list;
  • timetimes of threshold setting
  • out$thrsobserved thresholds
  • out$residresiduals
  • out$fitoptimal fitted values
  • out$thetseed parameters if test data
  • out$ssesum of squared residuals if test data
  • out$datasource of the data
  • out$optoptimal parameter estimates of the chosen model
  • out$Modname of the optimal model
  • out$Pnthe number of parameters needed to describe the data
  • out$AICarray of AICc scores
  • out$valcalculated sum of squared residuals
  • out$R2the coefficient of determination
  • out$warningif none of the nearby values converge
  • out$callupdates the function call label

Details

To reduce the possibility of selecting non-optimal parameter estimates, the optimisation is repeated in the region of initial estimates. The

References

Nelder, J.A.; Mead, R. 1965: A simplex for function minimization. Comput. J. 7, 308-313

Examples

Run this code
set.seed(1234)
Time<- seq(0,20)
tmp<- TestData(Time)
P<-Start(tmp,1000)
MSC<-ModelSelect(tmp, P)
tmp2<-BestFit(tmp, MSC)
tmp3<-MultiStart(tmp2,100)

Run the code above in your browser using DataLab