# Workflow for using the DataSimilarity package:
# Prepare data example: comparing species in iris dataset
data("iris")
iris.split <- split(iris[, -5], iris$Species)
setosa <- iris.split$setosa
versicolor <- iris.split$versicolor
virginica <- iris.split$virginica
# 1. Find appropriate methods that can be used to compare 3 numeric datasets:
findSimilarityMethod(Numeric = TRUE, Multiple.Samples = TRUE)
# get more information
findSimilarityMethod(Numeric = TRUE, Multiple.Samples = TRUE, only.names = FALSE)
# 2. Choose a method and apply it:
# All suitable methods
possible.methds <- findSimilarityMethod(Numeric = TRUE, Multiple.Samples = TRUE,
only.names = FALSE)
# Select, e.g., method with highest number of fulfilled criteria
possible.methds$Implementation[which.max(possible.methds$Number.Fulfilled)]
set.seed(1234)
if(requireNamespace("KMD")) {
DataSimilarity(setosa, versicolor, virginica, method = "KMD")
}
# or directly
set.seed(1234)
if(requireNamespace("KMD")) {
KMD(setosa, versicolor, virginica)
}
Run the code above in your browser using DataLab