Learn R Programming

DataVisualizations (version 1.1.4)

ClassViolinPlot: Creates PDE optimized Violin plot for all classes

Description

ClassViolinPlot the data for all classes

Usage

ClassViolinPlot(Data, Cls, ColorSequence = DataVisualizations::DefaultColorSequence,

ClassNames = NULL,

PlotLegend = TRUE,

main = 'PDE Violin Plot for each Class',

xlab = 'Classes',

ylab = 'PDE of Data per Class')

Arguments

Data

Vector of the data to be plotted

Cls

Vector of class identifiers.

ColorSequence

Optional: The sequence of colors used, Default: DefaultColorSequence()

ClassNames

Optional: The names of the classes. Default: C1 - C(Number of Classes)

PlotLegend

Optional: Add a legent to plot. Default: TRUE)

main

Optional: Title of the plot. Default: "ClassViolinPlot""

xlab

Optional: Title of the x axis. Default: "Classes"

ylab

Optional: Title of the y axis. Default: "Data"

Value

A List of

ClassData

The DataFrame used to plot

ggobject

The ggplot2 plot object

References

Thrun, M. C., Pape, F., & Ultsch, A. : Benchmarking Cluster Analysis Methods using PDE-Optimized Violin Plots, Proc. European Conference on Data Analysis (ECDA), accepted, Paderborn, Germany, 2018.

Thrun, M. C., Breuer, L., & Ultsch, A. : Knowledge discovery from low-frequency stream nitrate concentrations: hydrology and biology contributions, Proc. European Conference on Data Analysis (ECDA), accepted, Paderborn, Germany, 2018.