
Last chance! 50% off unlimited learning
Sale ends in
Density estimation (PDE) [Ultsch, 2005] or "SDH" [Eilers/Goeman, 2004] used for a scatter density plot.
DensityScatter(x,y, DensityEstimation="SDH",SampleSize, na.rm=FALSE,PlotIt=TRUE,
NrOfContourLines=20,Plotter='native', DrawTopView = TRUE,
xlab="X", ylab="Y", main="DensityScatter",
xlim, ylim, Legendlab_ggplot="value",…)
Numeric vector [1:n], first feature (for x axis values)
Numeric vector [1:n], second feature (for y axis values)
"SDH" is very fast but maybe not correct, "PDE" is slow but proably more correct.
Numeric, positiv scalar, maximum size of the sample used for calculation. High values increase runtime significantly. The default is that no sample is drawn
Function may not work with non finite values. If these cases should be automatically removed, set parameter TRUE
TRUE
: plots with function call
FALSE
: Does not plot, plotting can be done using the list element Handle
Numeric, number of contour lines to be drawn. 20 by default.
String, name of the plotting backend to use. Possible values are: "native
", "ggplot
", "plotly
"
Boolean, True means contur is drawn, otherwise a 3D plot is drawn. Default: TRUE
String, title of the x axis. Default: "X", see plot()
function
String, title of the y axis. Default: "Y", see plot()
function
string, the same as "main" in plot()
function
see plot()
function
see plot()
function
String, in case of Plotter="ggplot"
label for the legend. Default: "value"
Density specifc parameters, for PDEscatter()
or SDH (nbins,lambda,Xkernels,Ykernel))
List of:
Numeric vector [1:m],m<=n, first feature used in the plot or the kernels used
Numeric vector [1:m],m<=n, second feature used in the plot or the kernels used
Number of points within the ParetoRadius of each point, i.e. density information
Handle of the plot object. Information-string if native R plot is used.
The DensityScatter
function generates the density of the xy data as a z coordinate. Afterwards xyz will be plotted either as a contour plot or a 3d plot. It assumens that the cases of x and y are mapped to each other meaning that a cbind(x,y)
operation is allowed.
This function plots the Density on top of a scatterplot. Variances of x and y should not differ by extreme numbers, otherwise calculate the percentiles on both first. If DrawTopView=FALSE
only the plotly option is currently available. If another option is chosen, the method switches automatically there.
PlotIt=FALSE
is usefull if one likes to perform adjustements like axis scaling prior to plotting with ggplot2 or plotly. In the case of "native
"" the handle returns NULL
because the basic R functon plot
() is used
[Thrun, 2018] Thrun, M. C.: Projection Based Clustering through Self-Organization and Swarm Intelligence, (Ultsch, A. & Huellermeier, E. Eds., 10.1007/978-3-658-20540-9), Doctoral dissertation, Heidelberg, Springer, ISBN: 978-3658205393, 2018.
[Thrun/Ultsch, 2018] Thrun, M. C., & Ultsch, A. : Effects of the payout system of income taxes to municipalities in Germany, in Papiez, M. & Smiech,, S. (eds.), Proc. 12th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena, pp. 533-542, Cracow: Foundation of the Cracow University of Economics, Cracow, Poland, 2018.
[Ultsch, 2005] Ultsch, A.: Pareto density estimation: A density estimation for knowledge discovery, In Baier, D. & Werrnecke, K. D. (Eds.), Innovations in classification, data science, and information systems, (Vol. 27, pp. 91-100), Berlin, Germany, Springer, 2005.
[Eilers/Goeman, 2004] Eilers, P. H., & Goeman, J. J.: Enhancing scatterplots with smoothed densities, Bioinformatics, Vol. 20(5), pp. 623-628. 2004.
# NOT RUN {
#taken from [Thrun/Ultsch, 2018]
data("ITS")
data("MTY")
Inds=which(ITS<900&MTY<8000)
plot(ITS[Inds],MTY[Inds],main='Bimodality is not visible in normal scatter plot')
# }
# NOT RUN {
DensityScatter(ITS[Inds],MTY[Inds],DensityEstimation="SDH",xlab = 'ITS in EUR',
ylab ='MTY in EUR' ,main='Smoothed Densities histogram indicates Bimodality' )
DensityScatter(ITS[Inds],MTY[Inds],DensityEstimation="PDE",xlab = 'ITS in EUR',
ylab ='MTY in EUR' ,main='PDE indicates Bimodality' )
# }
Run the code above in your browser using DataLab