powered by
Visualizes the distances between objects in the data matrix
InspectDistances(DataOrDistances,method= "euclidean",sampleSize = 50000,...)
[1:n,1:d] data cases in rows, variables in columns, if not symmetric
or
[1:n,1:n] distance matrix, if symmetric
Optional, if Data[1:n,1:d] see parallelDist::parDist for distance method
parallelDist::parDist
double value defining the size of the sample for large distance matrizes, see InspectVariable
InspectVariable
further arguments passed on to InspectVariable
Michael Thrun
For an interpretation of the distribution analysis of the distance please read [Thrun, 2018, p. 27, 185].
[Thrun, 2018] Thrun, M. C.: Projection Based Clustering through Self-Organization and Swarm Intelligence, doctoral dissertation 2017, Springer, ISBN: 978-3-658-20539-3, Heidelberg, 2018.
data("Lsun3D") Data=Lsun3D$Data # \donttest{ InspectDistances(as.matrix(dist(Data))) # } # \dontshow{ InspectDistances(as.matrix(dist(Data[1:50,]))) # }
Run the code above in your browser using DataLab