This functions plots ParetoDensityEsrtimation (PDE) and robustly estimated Gaussian with empirical Mean and Variance
PDEnormrobust(Data,xlab='PDE',ylab,main='PDEnormrobust',
PlotSymbolPDE='blue',
PlotSymbolGauss= 'magenta',PlotIt=TRUE,
Mark2Sigma=FALSE,Mark3Sigma=FALSE,
p_mean=10,p_sd=25,...)
numeric vector. The x points of the PDE function.
estimated pdf of data, numeric vector, the PDE(x).
numeric value, the Pareto Radius used for the plot.
pdf based on rubstly estimated parameters
Named vector of robustly estimatated Mean
, standard deviation SD
, Sigma2
=1.96*SD and Sigma3
=2.576*SD, EstPercData_Sigma2
, EstPercData_Sigma3
numeric vector, data to be plotted.
Optional,see plot
Optional,see plot
Optional,see plot
line color pdf
line color robust gauss
TRUE: shows plot
TRUE: sets to vertical lines marking data outside M+-1.96SD
TRUE: sets to vertical lines marking data outside M+-2.576SD
scalar between 1-99, percent of the top- and bottomcut from x
scalar between 1-99, lowInnerPercentile for robustly estimated standard deviation
Further arguments for plot
Michael Thrun
Within Mark2Sigma
95 percent of data should be contained if distribution is Gaussian
Within Mark3Sigma
99 percent of data should be contained if distribution is Gaussian
The 3sgima rule is usually defined as M+-3SD containing 99.7 percent of data but to simplify, the input parameter name is called Mark3Sigma
instead Mark2comma576Sigma
, the same reason applies to the output parameter Sigma3
.
data(MTY)
# \donttest{
PDEnormrobust(unname(MTY))
# }
Run the code above in your browser using DataLab