
Last chance! 50% off unlimited learning
Sale ends in
This function plots the Pareto probability density estimation (PDE), uses PDEstimationForGauss and ParetoRadius.
PDEplot(Data, paretoRadius = 0, weight = 1, kernels = NULL, LogPlot = F, PlotIt = TRUE, title =
"ParetoDensityEstimation(PDE)", color = "blue",
xpoints = FALSE, xlim, ylim, xlab, ylab =
"PDE", ggPlot = ggplot(), sampleSize = 2e+05, lwd = 2)
numeric vector. The x points of the PDE function.
numeric vector, the PDE(x).
numeric value, the Pareto Radius used for the plot.
ggplot2 object. Can be used to further modify the plot or add other plots.
[1:n] numeric vector of data to be plotted.
numeric, the Pareto Radius. If omitted, calculate by paretoRad.
numeric, Weight*ParetoDensity is plotted. 1 by default.
numeric vector of kernels. Optional
LogLog PDEplot if TRUE, xpoints has to be FALSE. Optional
logical, if plot. TRUE by default.
character vector, title of plot.
character vector, color of plot.
logical, if TRUE only points are plotted. FALSE by default.
Arguments to be passed to the plot method.
Arguments to be passed to the plot method.
Arguments to be passed to the plot method.
Arguments to be passed to the plot method.
ggplot2 object to be plotted upon. Insert an exisiting plot to add a new PDEPlot to it. Default: empty plot
default(200000), sample size, if datavector is to big
linewidth, see plot
Michael Thrun
Ultsch, A.: Pareto Density Estimation: A Density Estimation for Knowledge Discovery, Baier D., Wernecke K.D. (Eds), In Innovations in Classification, Data Science, and Information Systems - Proceedings 27th Annual Conference of the German Classification Society (GfKL) 2003, Berlin, Heidelberg, Springer, pp, 91-100, 2005.
x <- rnorm(1000, mean = 0.5, sd = 0.5)
y <- rnorm(750, mean = -0.5, sd = 0.75)
plt <- PDEplot(x, color = "red")$ggPlot
plt <- PDEplot(y, color = "blue", ggPlot = plt)$ggPlot
# Second Example
# ggplotObj=ggplot()
# for(i in 1:length(Variables))
# ggplotObj=PDEplot(Data[,i],ggPlot = ggplotObj)$ggPlot
Run the code above in your browser using DataLab