Estimates densities for two-dimensional data with the given estimation type
estimateDensity2D(X, Y, DensityEstimation = "SDH",SampleSize, na.rm = FALSE, NoBinsOrPareto = NULL)
List V with
[1:m] numerical vector of first feature, m<=n depending if all values are finite an na.rm parameter
[1:m] numerical vector of second feature, m<=n depending if all values are finite an na.rm parameter
the density of each two-dimensional data point
[1:n] numerical vector of first feature
[1:n] numerical vector of second feature
Either "PDE","SDH" or "kde2d"
Sample Size in case of big data
Function may not work with non finite values. If these cases should be automatically removed, set parameter TRUE
Density specifc parameters, for PDEscatter(ParetoRadius) or SDH (nbins)) or kde2d(bins)
Luca Brinkman and Michael Thrun
Each two-dimensional data point is defined by its corresponding X and Y value.
[Ultsch, 2005] Ultsch, A.: Pareto density estimation: A density estimation for knowledge discovery, In Baier, D. & Werrnecke, K. D. (Eds.), Innovations in classification, data science, and information systems, (Vol. 27, pp. 91-100), Berlin, Germany, Springer, 2005.
[Eilers/Goeman, 2004] Eilers, P. H., & Goeman, J. J.: Enhancing scatterplots with smoothed densities, Bioinformatics, Vol. 20(5), pp. 623-628. 2004
X=runif(100)
Y=rnorm(100)
#V=estimateDensity2D(X,Y)
Run the code above in your browser using DataLab