# NOT RUN {
#Create a value hierarchy tree
branches<- as.data.frame(matrix(ncol=5,nrow=7))
names(branches)<-c("Level1","Level2","Level3","leaves","weights")
branches[1,]<-rbind("QB","Elusiveness","Speed","Forty","0.092")
branches[2,]<-rbind("QB","Elusiveness","Agility","Shuttle","0.138")
branches[3,]<-rbind("QB","Size","","Height","0.096")
branches[4,]<-rbind("QB","Size","","Weight","0.224")
branches[5,]<-rbind("QB","Intelligence","","Wonderlic","0.07")
branches[6,]<-rbind("QB","Strength","Explosiveness","Vertical","0.152")
branches[7,]<-rbind("QB","Strength","Power","Broad","0.228")
value_hierarchy_tree(branches$Level1,branches$Level2,branches$Level3,
leaves=branches$leaves,weights=branches$weights)
#subset NFLcombine data from DecisionAnalysis package
qbdata <- NFLcombine[1:7,]
#Create SAVF_matrix
Height <- SAVF_exp_score(qbdata$heightinchestotal, 68, 75.21, 82)
Weight <- SAVF_exp_score(qbdata$weight, 185, 224.34, 275)
Forty <- SAVF_exp_score(qbdata$fortyyd, 4.3, 4.81, 5.4, increasing=FALSE)
Shuttle <- SAVF_exp_score(qbdata$twentyss, 3.8, 4.3, 4.9, increasing=FALSE)
Vertical <- SAVF_exp_score(qbdata$vertical, 21, 32.04, 40)
Broad <- SAVF_exp_score(qbdata$broad, 90, 111.24, 130)
Wonderlic <- SAVF_exp_score(qbdata$wonderlic, 0, 27.08, 50)
SAVF_matrix = cbind(Height, Weight, Forty, Shuttle, Vertical, Broad, Wonderlic)
#Create weights vector
weights = c(0.096, 0.224, 0.092, 0.138, 0.152, 0.228, 0.07)
#Calculate MAVF Score
MAVF_Scores(SAVF_matrix, weights, qbdata$name)
#Plot MAVF Breakout
MAVF_breakout(SAVF_matrix, weights, qbdata$name)
#Plot sensitivity analysis for shuttle criteria
sensitivity_plot(SAVF_matrix, weights, qbdata$name, 4)
# }
Run the code above in your browser using DataLab