select_diagnosands("bias")
select_diagnosands("prop_pos_sig", "mean_se", alpha = .001)
select_diagnosands("bias")(data.frame(estimate = 2, estimand = 3))
select_diagnosands("bias")(data.frame(estimate = 1:2, estimand = c(NA, 2)))
select_diagnosands("bias", na.rm = TRUE)(data.frame(estimate = 1:2, estimand = c(NA, 2)))
# Example of use with diagnose_design
design <-
declare_model(N = 100, u = rnorm(N),
Y_Z_0 = 0,
Y_Z_1 = ifelse(rbinom(N, 1, prob = 0.5), 0.1, -0.1) + u
) +
declare_assignment(Z = complete_ra(N)) +
declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
declare_measurement(Y = reveal_outcomes(Y ~ Z)) +
declare_estimator(Y ~ Z, inquiry = "ATE")
# Compare the average se and the sd of the sampling distribution of the estimate
diagnose_design(design,
diagnosands = select_diagnosands("sd_estimate", "mean_se"),
sims = 100)
Run the code above in your browser using DataLab