Create counterfactual datasets in the population for compliers and
noncompliers. Then predict potential outcomes using trained model from
neuralnet_response_model
.
neuralnet_pattc_counterfactuals(
pop.data,
neuralnet.response.mod,
ID = NULL,
cluster = NULL,
binary.outcome = FALSE
)
data.frame
of predicted outcomes of response variable from
counterfactuals.
population data.
trained model from.
neuralnet_response_model
.
string for identifier variable.
string for clustering variable (currently unused).
logical specifying predicted outcome variable will take binary values or proportions.