
Last chance! 50% off unlimited learning
Sale ends in
PostHocTest(x, ...)
## S3 method for class 'aov':
PostHocTest(x, which = NULL,
method = c("hsd", "bonferroni", "lsd", "scheffe", "newmankeuls", "duncan"),
conf.level = 0.95, ordered = FALSE, ...)
## S3 method for class 'table':
PostHocTest(x, method = c("none", "fdr", "BH", "BY", "bonferroni",
"holm", "hochberg", "hommel"),
conf.level = 0.95, ...)
## S3 method for class 'PostHocTest':
print(x, digits = getOption("digits"), ...)
## S3 method for class 'PostHocTest':
plot(x, ...)
"hsd"
, "bonf"
, "lsd"
, "scheffe"
, "newmankeuls"
, defining the method for the pairwise comparisons.
For the post hoc test of tables the methods of
TRUE
then the calculated differences in the means will all be positive. The signifp.adjust
.TukeyHSD
, aov
, pairwise.t.test
,
ScheffeTest
PostHocTest(aov(breaks ~ tension, data = warpbreaks), method = "lsd")
PostHocTest(aov(breaks ~ tension, data = warpbreaks), method = "hsd")
PostHocTest(aov(breaks ~ tension, data = warpbreaks), method = "scheffe")
r.aov <- aov(breaks ~ tension, data = warpbreaks)
# compare p-values:
round(cbind(
lsd= PostHocTest(r.aov, method="lsd")$tension[,"pval"]
, bonf=PostHocTest(r.aov, method="bonf")$tension[,"pval"]
), 4)
# only p-values by setting conf.level to NA
PostHocTest(aov(breaks ~ tension, data = warpbreaks), method = "hsd",
conf.level=NA)
Run the code above in your browser using DataLab