Performs the Shapiro-Francia test for the composite hypothesis of normality.
ShapiroFranciaTest(x)
a numeric vector of data values, the number of which must be between 5 and 5000. Missing values are allowed.
A list of class htest
, containing the following components:
the value of the Shapiro-Francia statistic.
the p-value for the test.
the character string “Shapiro-Francia normality test”.
a character string giving the name(s) of the data.
The test statistic of the Shapiro-Francia test is simply the squared correlation between the ordered sample values and the (approximated) expected ordered quantiles from the standard normal distribution. The p-value is computed from the formula given by Royston (1993).
Royston, P. (1993): A pocket-calculator algorithm for the Shapiro-Francia test for non-normality: an application to medicine. Statistics in Medicine, 12, 181--184.
Thode Jr., H.C. (2002): Testing for Normality. Marcel Dekker, New York. (2002, Sec. 2.3.2)
shapiro.test
for performing the Shapiro-Wilk test for normality.
AndersonDarlingTest
, CramerVonMisesTest
,
LillieTest
, PearsonTest
for performing further tests for normality.
qqnorm
for producing a normal quantile-quantile plot.
# NOT RUN {
ShapiroFranciaTest(rnorm(100, mean = 5, sd = 3))
ShapiroFranciaTest(runif(100, min = 2, max = 4))
# }
Run the code above in your browser using DataLab