
Last chance! 50% off unlimited learning
Sale ends in
PlotMultiDens(x, ...)
## S3 method for class 'default':
PlotMultiDens(x, xlim = NULL, ylim = NULL,
col = rainbow(length(x)),
lty = "solid", lwd = 1, xlab = "x", ylab = "density",
args.dens = NULL, args.legend = NULL,
na.rm = FALSE, flipxy=FALSE, ...)
## S3 method for class 'formula':
PlotMultiDens(formula, data, subset, \dots)
split
to separate a vector by groups.
(See examples)rainbow(1:length(x))
."x"
and "density"
.density
function.
If set to NULL
the defaults will be used. Those are n = 4096
(2^12) and kernel = "epanechnikov"
.legend
function.
Use args.legend = NA
if no legend should be added.FALSE
.FALSE
.lhs ~ rhs
where lhs
gives the data values and rhs the corresponding groups.model.frame
) containing the variables in the formula formula
.
By default the variables are taken from environment(formula)
plot(...)
.bw
, n
and kernel
parameters used for the list elements.
The number of rows correspond to the length of the list x.PlotViolin
, density
x <- rnorm(1000,0,1)
y <- rnorm(1000,0,2)
z <- rnorm(1000,2,1.5)
# the input of the following function MUST be a numeric list
PlotMultiDens(list(x=x,y=y,z=z))
PlotMultiDens( x=split(d.pizza$delivery_min, d.pizza$driver), na.rm=TRUE
, main="delivery time ~ driver", xlab="delivery time [min]", ylab="density"
, lwd=1:7, lty=1:7
, panel.first=grid())
# this example demonstrates the definition of different line types and -colors
# an is NOT thought as recommendation for good plotting practice... :-)
# the formula interface
PlotMultiDens(delivery_min ~ driver, data=d.pizza)
# recyling of the density parameters
res <- PlotMultiDens(x=split(d.pizza$temperature, d.pizza$driver),
args.dens = list(bw=c(5,2), kernel=c("rect","epanechnikov")), na.rm=TRUE)
res
# compare bandwidths
PlotMultiDens(x=split(d.pizza$temperature, d.pizza$driver)[1],
args.dens = list(bw=c(1:5)), na.rm=TRUE,
args.legend=NA, main="Compare bw")
legend(x="topright", legend=gettextf("bw = %s", 1:5), fill=rainbow(5))
Run the code above in your browser using DataLab