## Not run:
# set.seed(421)
#
# # Set test problem parameters
# doe.size <- 12
# dim <- 2
# test.function <- get("branin2")
# lower <- rep(0,1,dim)
# upper <- rep(1,1,dim)
# noise.var <- 0.2
#
# # Generate DOE and response
# doe <- as.data.frame(matrix(runif(doe.size*dim),doe.size))
# y.tilde <- rep(0, 1, doe.size)
# for (i in 1:doe.size) {
# y.tilde[i] <- test.function(doe[i,]) + sqrt(noise.var)*rnorm(n=1)
# }
# y.tilde <- as.numeric(y.tilde)
#
# # Create kriging model
# model <- km(y~1, design=doe, response=data.frame(y=y.tilde),
# covtype="gauss", noise.var=rep(noise.var,1,doe.size),
# lower=rep(.1,dim), upper=rep(1,dim), control=list(trace=FALSE))
#
# # Compute actual function and criterion on a grid
# n.grid <- 12 # Change to 21 for a nicer picture
# x.grid <- y.grid <- seq(0,1,length=n.grid)
# design.grid <- expand.grid(x.grid, y.grid)
# nt <- nrow(design.grid)
#
# crit.grid <- apply(design.grid, 1, AEI, model=model, new.noise.var=noise.var)
# crit.grad <- t(apply(design.grid, 1, AEI.grad, model=model, new.noise.var=noise.var))
#
# z.grid <- matrix(crit.grid, n.grid, n.grid)
# contour(x.grid,y.grid, z.grid, 30)
# title("AEI and its gradient")
# points(model@X[,1],model@X[,2],pch=17,col="blue")
#
# options(warn=-1)
# for (i in 1:nt)
# {
# x <- design.grid[i,]
# arrows(x$Var1,x$Var2, x$Var1+crit.grad[i,1]*.6,x$Var2+crit.grad[i,2]*.6,
# length=0.04,code=2,col="orange",lwd=2)
# }
# ## End(Not run)
Run the code above in your browser using DataLab