## Not run:
# set.seed(123)
# # a 9-points factorial design, and the corresponding response
# d <- 2; n <- 9
# design.fact <- expand.grid(seq(0,1,length=3), seq(0,1,length=3))
# names(design.fact)<-c("x1", "x2")
# design.fact <- data.frame(design.fact)
# names(design.fact)<-c("x1", "x2")
# response.branin <- apply(design.fact, 1, branin)
# response.branin <- data.frame(response.branin)
# names(response.branin) <- "y"
#
# # model identification
# fitted.model1 <- km(~1, design=design.fact, response=response.branin,
# covtype="gauss", control=list(pop.size=50,trace=FALSE), parinit=c(0.5, 0.5))
#
# # graphics
# n.grid <- 50
# x.grid <- y.grid <- seq(0,1,length=n.grid)
# design.grid <- expand.grid(x.grid, y.grid)
# #response.grid <- apply(design.grid, 1, branin)
# EI.grid <- apply(design.grid, 1, EI,fitted.model1)
# #EI.grid <- apply(design.grid, 1, EI.plot,fitted.model1, gr=TRUE)
#
# z.grid <- matrix(EI.grid, n.grid, n.grid)
#
# contour(x.grid,y.grid,z.grid,20)
# title("Expected Improvement for the Branin function known at 9 points")
# points(design.fact[,1], design.fact[,2], pch=17, col="blue")
#
# # graphics
# n.gridx <- 15
# n.gridy <- 20
# x.grid2 <- seq(0,1,length=n.gridx)
# y.grid2 <- seq(0,1,length=n.gridy)
# design.grid2 <- expand.grid(x.grid2, y.grid2)
#
# EI.envir <- new.env()
# environment(EI) <- environment(EI.grad) <- EI.envir
#
# options(warn=-1)
# for(i in seq(1, nrow(design.grid2)) )
# {
# x <- design.grid2[i,]
# ei <- EI(x, model=fitted.model1, envir=EI.envir)
# eigrad <- EI.grad(x , model=fitted.model1, envir=EI.envir)
# if(!(is.null(ei)))
# {
# arrows(x$Var1,x$Var2,
# x$Var1 + eigrad[1]*2.2*10e-5, x$Var2 + eigrad[2]*2.2*10e-5,
# length = 0.04, code=2, col="orange", lwd=2)
# }
# }
# ## End(Not run)
Run the code above in your browser using DataLab