Learn R Programming

DiceOptim (version 2.0)

max_EQI: Maximizer of the Expected Quantile Improvement criterion function

Description

Maximization, based on the package rgenoud of the Expected Quantile Improvement (EQI) criterion.

Usage

max_EQI(model, new.noise.var = 0, beta = 0.9, q.min = NULL, type = "UK", lower, upper, parinit = NULL, control = NULL)

Arguments

model
a Kriging model of "km" class
new.noise.var
the (scalar) noise variance of an observation. Default value is 0 (noise-free observation).
beta
Quantile level (default value is 0.9)
q.min
The current best kriging quantile. If not provided, this quantity is evaluated inside the EQI function (may increase computational time).
type
Kriging type: "SK" or "UK"
lower
vector containing the lower bounds of the variables to be optimized over
upper
optional vector containing the upper bounds of the variables to be optimized over
parinit
optional vector containing the initial values for the variables to be optimized over
control
optional list of control parameters for optimization. One can control "pop.size" (default : [N=3*2^dim for dim<6 and="" n="32*dim" otherwise]),="" "max.generations" (12), "wait.generations" (2) and "BFGSburnin" (2) of function "genoud" (see genoud). Numbers into brackets are the default values

Value

A list with components: A list with components:

Examples

Run this code
set.seed(10)

# Set test problem parameters
doe.size <- 10
dim <- 2
test.function <- get("branin2")
lower <- rep(0,1,dim)
upper <- rep(1,1,dim)
noise.var <- 0.2

# Generate DOE and response
doe <- as.data.frame(matrix(runif(doe.size*dim),doe.size))
y.tilde <- rep(0, 1, doe.size)
for (i in 1:doe.size)  {y.tilde[i] <- test.function(doe[i,])
+ sqrt(noise.var)*rnorm(n=1)}
y.tilde <- as.numeric(y.tilde)

# Create kriging model
model <- km(y~1, design=doe, response=data.frame(y=y.tilde),
     covtype="gauss", noise.var=rep(noise.var,1,doe.size),
     lower=rep(.1,dim), upper=rep(1,dim), control=list(trace=FALSE))

# Optimisation using max_EQI
res <- max_EQI(model, new.noise.var=noise.var, type = "UK",
lower=c(0,0), upper=c(1,1))
X.genoud <- res$par

## Not run: 
# # Compute actual function and criterion on a grid
# n.grid <- 12 # Change to 21 for a nicer picture
# x.grid <- y.grid <- seq(0,1,length=n.grid)
# design.grid <- expand.grid(x.grid, y.grid)
# names(design.grid) <- c("V1","V2")
# nt <- nrow(design.grid)
# crit.grid <- apply(design.grid, 1, EQI, model=model, new.noise.var=noise.var, beta=.9)
# 
# # # 2D plots
# z.grid <- matrix(crit.grid, n.grid, n.grid)
# tit <- "Green: best point found by optimizer"
# filled.contour(x.grid,y.grid, z.grid, nlevels=50, color = rainbow,
# plot.axes = {title(tit);points(model@X[,1],model@X[,2],pch=17,col="blue");
# points(X.genoud[1],X.genoud[2],pch=17,col="green");
# axis(1); axis(2)})
# ## End(Not run)

Run the code above in your browser using DataLab