## Not run:
#
# set.seed(000)
# # 3-points EI maximization.
# # 9-points factorial design, and the corresponding response
# d <- 2
# n <- 9
# design.fact <- expand.grid(seq(0,1,length=3), seq(0,1,length=3))
# names(design.fact)<-c("x1", "x2")
# design.fact <- data.frame(design.fact)
# names(design.fact)<-c("x1", "x2")
# response.branin <- apply(design.fact, 1, branin)
# response.branin <- data.frame(response.branin)
# names(response.branin) <- "y"
# lower <- c(0,0)
# upper <- c(1,1)
#
# # number of point in the bacth
# batchSize <- 3
#
# # model identification
# fitted.model <- km(~1, design=design.fact, response=response.branin,
# covtype="gauss", control=list(pop.size=50,trace=FALSE), parinit=c(0.5, 0.5))
#
# # maximization of qEI
#
# # With a multistarted BFGS algorithm
# maxBFGS <- max_qEI(model = fitted.model, npoints = batchSize, lower = lower, upper = upper,
# crit = "exact",optimcontrol=list(nStarts=3,method = "BFGS"))
# # With a genetic algorithme using derivatives
# maxGen <- max_qEI(model = fitted.model, npoints = batchSize, lower = lower, upper = upper,
# crit = "exact", optimcontrol=list(nStarts=3,method = "genoud",pop.size=100,max.generations = 15))
# # With the constant liar heuristic
# maxCL <- max_qEI(model = fitted.model, npoints = batchSize, lower = lower, upper = upper,
# crit = "CL",optimcontrol=list(pop.size=20))
#
# # comparison
# print(maxBFGS$value)
# print(maxGen$value)
# print(maxCL$value)
#
# ## End(Not run)
Run the code above in your browser using DataLab