Learn R Programming

DiffusionRimp (version 0.1.2)

DiffusionRimp-package: Data-imputation and density approximations for diffusion processes.

Description

A package for performing data imputation on discretely observed diffusion processes as well as calculating numerical approximations to transition and first passage time densities.

Arguments

Details

Package:
DiffusionRimp
Type:
Package
Version:
0.1.0
Date:
2015-12-01
License:
GPL (>= 2)
Functions included in the package:
RS.impute :
Perform inference on a diffusion model using the random walk Metropolis-Hastings algorithm using the data-imputation algorithm. BiRS.impute
: Perform inference on a bivariate diffusion model using the random walk Metropolis-Hastings algorithm using the data-imputation algorithm.
MOL.density :
Calculate the transitional density of a diffusion model using the method of lines. BiMOL.density
: Calculate the transitional density of a bivariate diffusion model using the method of lines.
MOL.passage :
Calculate the first passage time density of a time-homogeneous diffusion model with fixed barriers (i.e., a two-barrier first passage time problem). BiMOL.passage
: Calculate the first passage time density of a time-homogeneous bivariate diffusion model with fixed barriers (i.e., a four-barrier problem in two dimensions).
MOL.aic* :
Calculate a pseudo-AIC value for a diffusion model using the method of lines. BiMOL.aic*
: Calculate pseudo-AIC value for a bivariate diffusion model using the method of lines.
* Functions use C++.

Examples

Run this code
# example(RS.impute)
# example(MOL.density)
# example(MOL.passage)

Run the code above in your browser using DataLab