## Load required packages
library(adehabitatHR)
## Load the data
data(StudyArea)
data(Roos)
## Convert into a spatial object
coordinates(Roos) <- ~x+y
## Estimation of UD and KUD 95% for the 10 animals
ud <- kernelUD(Roos,h="href",same4all=TRUE)
ver95 <- getverticeshr(ud,95,unin = c("m"),unout=c("ha"))
udsgdf <- as(estUDm2spixdf(ud),"SpatialGridDataFrame")
## For all 10 individuals, extract probability weighted random points
## falling within their respective utilisation distributions
ranXY <- fRanXY(1:10,udsgdf)
coordinates(ranXY) <- ~x+y
## Run Nearest neighbour function with those interactions < 50 m to generate the nb object
## See ?dnearneigh in the spdep package for more information
Gprox <- 50
dnn_digi <- dnearneigh(ranXY,0,Gprox,row.names=as.character(ranXY$ID))
## Plot and visualise these groups with and without animal IDS
fAssocplot(dnn_digi,ranXY,iplotnames=TRUE)
fAssocplot(dnn_digi,ranXY,iplotnames=FALSE)
Run the code above in your browser using DataLab