kf$$B_{x,h}(y) = \frac {(x+1)!} {y!(x+1-y)!}\left(\frac{x+h}{x+1}\right)^y\left(\frac{1-h}{x+1}\right)^{(x+1-y)}1_{S_{x}}(y),$$
where $h\in(0, 1]$ and $1_A$ denotes the indicator function of A. Note that $B_{x,h}$ is the p.m.f. of the Binomial distribution with its number of trials $x+1$ and its success probability $(x+h)/(x+1)$. See Kokonendji and Senga Kiessé (2011).
CVbw is used for DiracDU, Binomial and Discrete Triangular kernels; see Kokonendji and Senga Kiessé (2011). The local Bayesian procedure Baysbw is implemented to select the bandwidth for Binomial kernel; see Zougab et al. (2012).Kokonendji, C.C. and Senga Kiessé, T. (2011). Discrete associated kernel method and extensions, Statistical Methodology 8, 497 - 516.
Kokonendji, C.C., Senga Kiessé, T. and Zocchi, S.S. (2007). Discrete triangular distributions and non-parametric estimation for probability mass function, Journal of Nonparametric Statistics 19, 241 - 254.
Kokonendji, C.C. and Zocchi, S.S. (2010). Extensions of discrete triangular distribution and boundary bias in kernel estimation for discrete functions, Statistics and Probability Letters 80, 1655 - 1662.
Zougab, N., Adjabi, S. and Kokonendji, C.C. (2012). Binomial kernel and Bayes local bandwidth in discrete functions estimation, Journal of Nonparametric Statistics 24, 783 - 795.