# Example 1
# Generating some random values with
# known mu and sigma
set.seed(189)
y <- rDGEII(n=100, mu=0.75, sigma=0.5)
# Fitting the model
library(gamlss)
mod1 <- gamlss(y~1, family=DGEII,
control=gamlss.control(n.cyc=500, trace=FALSE))
# Extracting the fitted values for mu and sigma
# using the inverse link function
inv_logit <- function(x) 1/(1 + exp(-x))
inv_logit(coef(mod1, what="mu"))
exp(coef(mod1, what="sigma"))
# Example 2
# Generating random values under some model
# A function to simulate a data set with Y ~ GGEO
gendat <- function(n) {
x1 <- runif(n)
x2 <- runif(n)
mu <- inv_logit(1.7 - 2.8*x1)
sigma <- exp(0.73 + 1*x2)
y <- rDGEII(n=n, mu=mu, sigma=sigma)
data.frame(y=y, x1=x1, x2=x2)
}
set.seed(1234)
datos <- gendat(n=100)
mod2 <- gamlss(y~x1, sigma.fo=~x2, family=DGEII, data=datos,
control=gamlss.control(n.cyc=500, trace=FALSE))
summary(mod2)
# Example 3
# Number of accidents to 647 women working on H. E. Shells
# for 5 weeks. Taken from
# Nekoukhou V, Alamatsaz MH, Bidram H (2013) page 886.
y <- rep(x=0:5, times=c(447, 132, 42, 21, 3, 2))
mod3 <- gamlss(y~1, family=DGEII,
control=gamlss.control(n.cyc=500, trace=FALSE))
# Extracting the fitted values for mu and sigma
# using the inverse link function
inv_logit <- function(x) 1/(1 + exp(-x))
inv_logit(coef(mod3, what="mu"))
exp(coef(mod3, what="sigma"))
Run the code above in your browser using DataLab