# Example 1
# Plotting the mass function for different parameter values
x_max <- 20
probs1 <- dPOISXL(x=0:x_max, mu=0.2)
probs2 <- dPOISXL(x=0:x_max, mu=0.5)
probs3 <- dPOISXL(x=0:x_max, mu=1.0)
# To plot the first k values
plot(x=0:x_max, y=probs1, type="o", lwd=2, col="dodgerblue", las=1,
ylab="P(X=x)", xlab="X", main="Probability for Poisson XLindley",
ylim=c(0, 0.50))
points(x=0:x_max, y=probs2, type="o", lwd=2, col="tomato")
points(x=0:x_max, y=probs3, type="o", lwd=2, col="green4")
legend("topright", col=c("dodgerblue", "tomato", "green4"), lwd=3,
legend=c("mu=0.2", "mu=0.5", "mu=1.0"))
# Example 2
# Checking if the cumulative curves converge to 1
x_max <- 20
plot_discrete_cdf(x=0:x_max,
fx=dPOISXL(x=0:x_max, mu=0.2), col="dodgerblue",
main="CDF for Poisson XLindley with mu=0.2")
plot_discrete_cdf(x=0:x_max,
fx=dPOISXL(x=0:x_max, mu=0.5), col="tomato",
main="CDF for Poisson XLindley with mu=0.5")
plot_discrete_cdf(x=0:x_max,
fx=dPOISXL(x=0:x_max, mu=1.0), col="green4",
main="CDF for Poisson XLindley with mu=1.0")
# Example 3
# Comparing the random generator output with
# the theoretical probabilities
x_max <- 15
probs1 <- dPOISXL(x=0:x_max, mu=0.3)
names(probs1) <- 0:x_max
x <- rPOISXL(n=3000, mu=0.3)
probs2 <- prop.table(table(x))
cn <- union(names(probs1), names(probs2))
height <- rbind(probs1[cn], probs2[cn])
nombres <- cn
mp <- barplot(height, beside = TRUE, names.arg = nombres,
col=c("dodgerblue3","firebrick3"), las=1,
xlab="X", ylab="Proportion")
legend("topright",
legend=c("Theoretical", "Simulated"),
bty="n", lwd=3,
col=c("dodgerblue3","firebrick3"), lty=1)
# Example 4
# Checking the quantile function
mu <- 0.3
p <- seq(from=0, to=1, by = 0.01)
qxx <- qPOISXL(p, mu, lower.tail = TRUE, log.p = FALSE)
plot(p, qxx, type="s", lwd=2, col="green3", ylab="quantiles",
main="Quantiles for Poisson XLindley mu=0.3")
Run the code above in your browser using DataLab