Learn R Programming

DiscreteDists (version 1.1.0)

POISXL: The Discrete Poisson XLindley

Description

The function POISXL() defines the Discrete Poisson XLindley distribution a single parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss().

Usage

POISXL(mu.link = "log")

Value

Returns a gamlss.family object which can be used to fit a Discrete Poisson XLindley distribution in the gamlss() function.

Arguments

mu.link

defines the mu.link, with "log" link as the default for the mu parameter.

Author

Mariana Blandon Mejia, mblandonm@unal.edu.co

Details

The Discrete Poisson XLindley distribution with parameters \(\mu\) has a support 0, 1, 2, ... and mass function given by

\(f(x | \mu) = \frac{\mu^2(x+\mu^2+3(1+\mu))}{(1+\mu)^{4+x}}\); with \(\mu>0\).

Note: in this implementation we changed the original parameters \(\alpha\) for \(\mu\), we did it to implement this distribution within gamlss framework.

References

Ahsan-ul-Haq, M., Al-Bossly, A., El-Morshedy, M., & Eliwa, M. S. (2022). Poisson XLindley distribution for count data: statistical and reliability properties with estimation techniques and inference. Computational Intelligence and neuroscience, 2022(1), 6503670.

See Also

dPOISXL.

Examples

Run this code
# Example 1
# Generating some random values with
# known mu
y <- rPOISXL(n=1000, mu=1)

# Fitting the model
library(gamlss)
mod1 <- gamlss(y~1, family=POISXL,
               control=gamlss.control(n.cyc=500, trace=FALSE))

# Extracting the fitted values for mu
# using the inverse link function
exp(coef(mod1, what="mu"))

# Example 2
# Generating random values under some model

# A function to simulate a data set with Y ~ POISXL
gendat <- function(n) {
  x1 <- runif(n, min=0.4, max=0.6)
  mu <- exp(1.21 - 3 * x1) # 0.75 approximately
  y <- rPOISXL(n=n, mu=mu)
  data.frame(y=y, x1=x1)
}

dat <- gendat(n=1500)

# Fitting the model
mod2 <- NULL
mod2 <- gamlss(y~x1, family=POISXL, data=dat,
               control=gamlss.control(n.cyc=500, trace=FALSE))

summary(mod2)

# Example 3
# The counts the number of borers per hill of corn in an
# experiment conducted randomly on 8 hills in 15 replications.
# Taken from Ahsan-ul-Haq et al (2022) page 10.

y <- rep(x=0:8, times=c(43, 35, 17, 11, 5, 4, 1, 2, 2))

mod3 <- gamlss(y~1, family=POISXL,
               control=gamlss.control(n.cyc=500, trace=FALSE))

# Extracting the fitted values for mu
exp(coef(mod3, what="mu"))

# Example 4
# The number of mammalian cytogenetic dosimetry lesions produced
# by streptogramin exposure in rabbit.
# Taken from Ahsan-ul-Haq et al (2022) page 10.

y <- rep(x=0:4, times=c(200, 57, 30, 7, 6))

mod4 <- gamlss(y~1, family=POISXL,
               control=gamlss.control(n.cyc=500, trace=FALSE))

# Extracting the fitted values for mu
exp(coef(mod4, what="mu"))


Run the code above in your browser using DataLab