# Example 1
# Plotting the mass function for diferent parameter values
x_max <- 25
probs1 <- dDPERKS(x=0:x_max, mu=0.001, sigma=0.52)
probs2 <- dDPERKS(x=0:x_max, mu=0.001, sigma=0.85)
probs3 <- dDPERKS(x=0:x_max, mu=0.001, sigma=1.5)
# To plot the first k values
plot(x=0:x_max, y=probs1, type="o", lwd=2, col="dodgerblue", las=1,
ylab="P(X=x)", xlab="X", main="Probability for Perks",
ylim=c(0, 0.40))
points(x=0:x_max, y=probs2, type="o", lwd=2, col="tomato")
points(x=0:x_max, y=probs3, type="o", lwd=2, col="green4")
legend("topright", col=c("dodgerblue", "tomato", "green4"), lwd=3,
legend=c("mu=0.001, sigma=0.52 ",
"mu=0.001, sigma=0.85",
"mu=0.001, sigma=1.5"))
# Example 2
# Checking if the cumulative curves converge to 1
x_max <- 25
cumulative_probs1 <- pDPERKS(q=0:x_max, mu=0.001, sigma=0.52)
cumulative_probs2 <- pDPERKS(q=0:x_max, mu=0.001, sigma=0.85)
cumulative_probs3 <- pDPERKS(q=0:x_max, mu=0.001, sigma=1.5)
plot(x=0:x_max, y=cumulative_probs1, col="dodgerblue",
type="o", las=1, ylim=c(0, 1),
main="Cumulative probability for Perks",
xlab="X", ylab="Probability")
points(x=0:x_max, y=cumulative_probs2, type="o", col="tomato")
points(x=0:x_max, y=cumulative_probs3, type="o", col="green4")
legend("bottomright", col=c("dodgerblue", "tomato", "green4"), lwd=3,
legend=c("mu=0.001, sigma=0.52 ",
"mu=0.001, sigma=0.85",
"mu=0.001, sigma=1.5"))
# Example 3
# Comparing the random generator output with the theoretical probabilities
x_max <- 50
mu <- 2.5
sigma <- 0.4
probs1 <- dDPERKS(x=0:x_max, mu=mu, sigma=sigma)
names(probs1) <- 0:x_max
x <- rDPERKS(n=1000, mu=mu, sigma=sigma)
probs2 <- prop.table(table(x))
cn <- union(names(probs1), names(probs2))
height <- rbind(probs1[cn], probs2[cn])
nombres <- cn
mp <- barplot(height, beside = TRUE, names.arg = nombres,
col=c('dodgerblue3','firebrick3'), las=1,
xlab='X', ylab='Proportion')
legend('topright',
legend=c('Theoretical', 'Simulated'),
bty='n', lwd=3,
col=c('dodgerblue3','firebrick3'), lty=1)
# Example 4
# Checking the quantile function
mu <- 0.2
sigma <- 0.2
p <- seq(from=0, to=1, by=0.01)
qxx <- qDPERKS(p=p, mu=mu, sigma=sigma, lower.tail=TRUE, log.p=FALSE)
plot(p, qxx, type="s", lwd=2, col="green3", ylab="quantiles",
main="Quantiles of DPERKS(mu = sigma = 0.03)")
Run the code above in your browser using DataLab