Learn R Programming

DiscreteWeibull (version 1.1)

lossdw: Loss function

Description

Loss function for the method of moments (type 1 discrete Weibull)

Usage

lossdw(par, x, zero = FALSE, eps = 1e-04, nmax=1000)

Arguments

par
vector of parameters $q$ and $\beta$
x
the vector of sample values
zero
TRUE, if the support contains $0$; FALSE otherwise
eps
error threshold for the numerical computation of the expected value
nmax
maximum value considered for the numerical computation of the expected value

Value

the value of the quadratic loss function

Details

The loss function is given by $L(x;q,\beta)=[m_1-\mathrm{E}(X;q,\beta)]^2+[m_2-\mathrm{E}(X^2;q,\beta)]^2$, where $\mathrm{E}(\cdot)$ denotes the expected value, $m_1$ and $m_2$ are the first and second order sample moments respectively.

See Also

Edweibull

Examples

Run this code
x <- c(1,1,1,1,1,2,2,2,3,4)
lossdw(c(0.5, 1), x)
par <- estdweibull(x, "M") # parameter estimates derived by the method of moments
par
lossdw(par, x) # the loss is zero using these estimates

Run the code above in your browser using DataLab