Loss function for the method of moments (type 3 discrete Weibull)
Usage
lossdw3(par, x, eps = 1e-04)
Arguments
par
vector of parameters $q$ and $\beta$
x
the vector of sample values
eps
error threshold for the numerical computation of the expected value
Value
the value of the quadratic loss function
Details
The loss function is given by $L(x;c,\beta)=[m_1-\mathrm{E}(X;c,\beta)]^2+[m_2-\mathrm{E}(X^2;c,\beta)]^2$, where $\mathrm{E}(\cdot)$ denotes the expected value, $m_1$ and $m_2$ are the first and second order sample moments respectively.