powered by
Limited mean of the Beta distribution with shape parameters \(\alpha\) and \(\beta\).
Elim_beta(d, shape1, shape2)
cut-off value. Recall the the domain is limited between 0 and 1.
shape parameter \(\alpha\), must be positive.
shape parameter \(\beta\), must be positive.
Function :
MGF_beta gives the moment generating function (MGF).
MGF_beta
E_beta gives the expected value.
E_beta
V_beta gives the variance.
V_beta
kthmoment_beta gives the kth moment.
kthmoment_beta
Etronq_beta gives the truncated mean.
Etronq_beta
SL_beta gives the stop-loss.
SL_beta
Elim_beta gives the limited mean.
Elim_beta
Mexcess_beta gives the mean excess loss.
Mexcess_beta
TVaR_beta gives the Tail Value-at-Risk.
TVaR_beta
Invalid parameter values will return an error detailing which parameter is problematic.
The Beta distribution with shape parameters \(\alpha\) and \(\beta\) has density: $$f\left(x\right) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) % \Gamma(\beta)} x^{\alpha - 1} (1 - x)^(\beta - 1)$$ for \(x \in [0, 1]\), \(\alpha, \beta > 0\).
Other Beta Distribution: E_beta(), Etronq_beta(), MGF_beta(), Mexcess_beta(), SL_beta(), TVaR_beta(), V_beta(), VaR_beta(), kthmoment_beta()
E_beta()
Etronq_beta()
MGF_beta()
Mexcess_beta()
SL_beta()
TVaR_beta()
V_beta()
VaR_beta()
kthmoment_beta()
# NOT RUN { Elim_beta(d = 0.3, shape1 = 4, shape2 = 5) # }
Run the code above in your browser using DataLab