Truncated mean of the Inverse Gaussian distribution with mean \(\mu\) and shape parameter \(\beta\).
Etronq_IG(
d,
mean,
shape = dispersion * mean^2,
dispersion = shape/mean^2,
less.than.d = TRUE
)
cut-off value.
mean (location) parameter \(\mu\), must be positive.
shape parameter \(\beta\), must be positive.
alternative parameterization to the shape parameter, dispersion = 1 / rate.
logical; if TRUE
(default) truncated mean for values <= d, otherwise, for values > d.
Function :
MGF_IG
gives the moment generating function (MGF).
E_IG
gives the expected value.
V_IG
gives the variance.
Etronq_IG
gives the truncated mean.
SL_IG
gives the stop-loss.
Elim_IG
gives the limited mean.
Mexcess_IG
gives the mean excess loss.
TVaR_IG
gives the Tail Value-at-Risk.
VaR_IG
gives the Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
The Pareto distribution with rate parameter \(\lambda\) as well as shape parameter \(\alpha\) has density: $$f\left(x\right) = \frac{\alpha% \lambda^{\alpha}}{(\lambda + x)^{\alpha + 1}}$$ for \(x \in \mathcal{R}^+\), \(\alpha, \lambda > 0\).
Other Inverse Gaussian Distribution:
E_IG()
,
Elim_IG()
,
MGF_IG()
,
Mexcess_IG()
,
SL_IG()
,
TVaR_IG()
,
V_IG()
,
VaR_IG()
# NOT RUN {
Etronq_IG(d = 2, mean = 2, shape = 5)
# }
Run the code above in your browser using DataLab