Learn R Programming

Distributacalcul (version 0.2.2)

Mexcess_burr: Mean excess loss of the Burr distribution

Description

Mean excess loss of the Burr distribution with shape parameters \(\alpha\) (shape1) and \(\tau\) (shape2) as well as rate parameter \(\lambda\).

Usage

Mexcess_burr(d, shape1, shape2, rate = 1/scale, scale = 1/rate)

Arguments

d

cut-off value.

shape1

first shape parameter \(\alpha\), must be positive integer.

shape2

second shape parameter \(\tau\), must be positive integer.

rate

\(\lambda\) is the rate parameter, must be positive.

scale

alternative parameterization to rate parameter, scale = 1 / rate.

Value

Function :

Invalid parameter values will return an error detailing which parameter is problematic.

Details

The Burr distribution with rate parameter \(\lambda\) as well as shape parameters \(\alpha\) and \(\tau\) has density: $$f\left(x\right) = \frac{\alpha \tau \lambda^{ \alpha } x^{ \tau - 1 }}{(\lambda + x^{ \tau })^{\alpha +1}}$$ for \(x \in \mathcal{R}^+\), \(\alpha, \tau, \lambda > 0\).

See Also

Other Burr Distribution: E_burr(), Elim_burr(), Etronq_burr(), SL_burr(), TVaR_burr(), V_burr(), VaR_burr(), kthmoment_burr()

Examples

Run this code
# NOT RUN {
# With scale parameter
Mexcess_burr(d = 2, rate = 2, shape1 = 2, shape2 = 5)

# With rate parameter
Mexcess_burr(d = 2, scale = 0.5, shape1 = 2, shape2 = 5)

# }

Run the code above in your browser using DataLab