require(DivE)
data(Bact1)
data(ModelSet)
data(ParamSeeds)
data(ParamRanges)
testmodels <- list()
testmeta <- list()
paramranges <- list()
# Choose a single model
testmodels <- c(testmodels, ModelSet[1])
#testmeta[[1]] <- (ParamSeeds[[1]]) # Commented out for sake of brevity)
testmeta[[1]] <- matrix(c(0.9451638, 0.007428265, 0.9938149, 1.0147441, 0.009543598, 0.9870419),
nrow=2, byrow=TRUE, dimnames=list(c(), c("a1", "a2", "a3"))) # Example seeds
paramranges[[1]] <- ParamRanges[[1]]
# Create DivSubsamples object (NB: For quick illustration only -- not default parameters)
dss_1 <- DivSubsamples(Bact1, nrf=2, minrarefac=1, maxrarefac=40, NResamples=5)
dss_2 <- DivSubsamples(Bact1, nrf=2, minrarefac=1, maxrarefac=65, NResamples=5)
dss <- list(dss_2, dss_1)
# Implement the function (NB: For quick illustration only -- not default parameters)
out <- DiveMaster(models=testmodels, init.params=testmeta, param.ranges=paramranges,
main.samp=Bact1, subsizes=c(65, 40), NResamples=5, fitloops=1,
dssamp=dss, numit=2, varleft=10)
# DiveMaster Outputs
out
out$estimate
out$fmm$logistic
out$fmm$logistic$global
out$ssm
summary(out)
## Combining two DiveMaster objects (assuming a second object 'out2'):
# out3 <- CombDM(list(out, out2))
## To calculate the diversity for a different population size
# PopDiversity(dm=out, popsize=10^5, TopX=1)
Run the code above in your browser using DataLab