Learn R Programming

DivMelt (version 1.0.3)

modelDivMelt: Routine to generate LASSO model for the Diversity Assay Analysis Tool

Description

modelDivMelt uses the provided training set data to generate and save a LASSO model for linear regression analysis on future samples. The training set must be a comma separated file with the following columns:

Sample,min,max,mean,stddev,sigma,dmin,dmax,dmean,dstddev,positive

where:

Sample = sample name

min,max,mean and stddev - those measures w.r.t. fluorescence

sigma - sigma from linear model of fluorescence

dmin,dmax,dmean and dstddev - those measures w.r.t. delta fluorescence

positive - 0 if rejected (negative control), 1 if accepted

The output file is written as an R object. The default filename is model.rda.

Usage

modelDivMelt( trngFile, datFile)

Arguments

trngFile
CSV file representing training set samples (required)
datFile
name of output model file (model.rda by default)

Examples

Run this code
library (DivMelt)
pkgDir<-system.file(package="DivMelt")
modelDivMelt(trngFile=paste(pkgDir,"/sample_data/training.csv",sep=''),datFile="new_model.rda")

Run the code above in your browser using DataLab