Learn R Programming

DoE.base (version 0.5)

arrays: Orthogonal arrays in the package

Description

Orthogonal arrays in the package

Usage

L18
L36
L4.2.3
L8.2.4.4.1
L9.3.4
L12.2.11
L12.2.2.6.1
L12.2.4.3.1
L16.2.8.8.1
L16.4.5
L18.2.1.3.7
L18.3.6.6.1
L20.2.19
L20.2.2.10.1
L20.2.8.5.1
L24.2.11.4.1.6.1
L24.2.12.12.1
L24.2.13.3.1.4.1
L24.2.20.4.1
L25.5.6
L27.3.9.9.1
L28.2.12.7.1
L28.2.2.14.1
L28.2.27
L32.2.16.16.1
L32.4.8.8.1
L36.2.1.3.3.6.3
L36.2.10.3.1.6.2
L36.2.10.3.8.6.1
L36.2.11.3.12
L36.2.13.3.2.6.1
L36.2.13.6.2
L36.2.16.9.1
L36.2.18.3.1.6.1
L36.2.2.18.1
L36.2.2.3.5.6.2
L36.2.20.3.2
L36.2.27.3.1
L36.2.3.3.2.6.3
L36.2.3.3.9.6.1
L36.2.35
L36.2.4.3.1.6.3
L36.2.8.6.3
L36.2.9.3.4.6.2
L36.3.12.12.1
L36.3.7.6.3
L40.2.19.4.1.10.1
L40.2.20.20.1
L40.2.25.4.1.5.1
L40.2.36.4.1
L44.2.15.11.1
L44.2.2.22.1
L44.2.43
L45.3.9.15.1
L48.2.24.24.1
L48.2.31.6.1.8.1
L48.2.33.3.1.8.1
L48.2.40.8.1
L48.4.12.12.1
L49.7.8
L50.5.10.10.1
L52.2.16.13.1
L52.2.2.26.1
L52.2.51
L54.3.18.18.1
L54.3.20.6.1.9.1
L56.2.27.4.1.14.1
L56.2.28.28.1
L56.2.37.4.1.7.1
L56.2.52.4.1
L60.2.15.6.1.10.1
L60.2.17.15.1
L60.2.2.30.1
L60.2.21.10.1
L60.2.23.5.1
L60.2.24.6.1
L60.2.30.3.1
L60.2.59
L63.3.12.21.1
L64.2.32.32.1
L64.2.5.4.10.8.4
L64.2.5.4.17.8.1
L64.4.14.8.3
L64.4.16.16.1
L64.4.7.8.6
L64.8.9
L68.2.18.17.1
L68.2.2.34.1
L68.2.67
L72.2.10.3.13.4.1.6.3
L72.2.10.3.16.6.2.12.1
L72.2.10.3.20.4.1.6.2
L72.2.11.3.17.4.1.6.2
L72.2.11.3.20.6.1.12.1
L72.2.12.3.21.4.1.6.1
L72.2.14.3.3.4.1.6.6
L72.2.15.3.7.4.1.6.5
L72.2.17.3.12.4.1.6.3
L72.2.18.3.16.4.1.6.2
L72.2.19.3.20.4.1.6.1
L72.2.27.3.11.6.1.12.1
L72.2.27.3.6.6.4
L72.2.28.3.2.6.4
L72.2.30.3.1.6.4
L72.2.31.6.4
L72.2.34.3.3.4.1.6.3
L72.2.34.3.8.4.1.6.2
L72.2.35.3.12.4.1.6.1
L72.2.35.3.5.4.1.6.2
L72.2.35.4.1.18.1
L72.2.36.3.2.4.1.6.3
L72.2.36.3.9.4.1.6.1
L72.2.36.36.1
L72.2.37.3.1.4.1.6.3
L72.2.37.3.13.4.1
L72.2.41.4.1.6.3
L72.2.42.3.4.4.1.6.2
L72.2.43.3.1.4.1.6.2
L72.2.43.3.8.4.1.6.1
L72.2.44.3.12.4.1
L72.2.46.3.2.4.1.6.1
L72.2.46.4.1.6.2
L72.2.49.4.1.9.1
L72.2.5.3.3.4.1.6.7
L72.2.51.3.1.4.1.6.1
L72.2.53.3.2.4.1
L72.2.6.3.3.6.6.12.1
L72.2.6.3.7.4.1.6.6
L72.2.60.3.1.4.1
L72.2.68.4.1
L72.2.7.3.4.4.1.6.6
L72.2.7.3.7.6.5.12.1
L72.2.8.3.12.4.1.6.4
L72.2.8.3.8.4.1.6.5
L72.2.9.3.12.6.3.12.1
L72.2.9.3.16.4.1.6.3
L72.3.24.24.1
L75.5.8.15.1
L76.2.19.19.1
L76.2.2.38.1
L76.2.75
L80.2.40.40.1
L80.2.51.4.3.20.1
L80.2.55.8.1.10.1
L80.2.61.5.1.8.1
L80.2.72.8.1
L80.4.10.20.1
L81.3.27.27.1
L81.9.10
L84.2.14.6.1.14.1
L84.2.2.42.1
L84.2.20.21.1
L84.2.20.3.1.14.1
L84.2.22.6.1.7.1
L84.2.27.6.1
L84.2.28.7.1
L84.2.33.3.1
L84.2.83
L88.2.43.4.1.22.1
L88.2.44.44.1
L88.2.56.4.1.11.1
L88.2.84.4.1
L90.3.26.6.1.15.1
L90.3.30.30.1
L92.2.2.46.1
L92.2.21.23.1
L92.2.91
L96.2.12.4.20.24.1
L96.2.17.4.23.6.1
L96.2.18.4.22.12.1
L96.2.19.3.1.4.23
L96.2.26.4.23
L96.2.39.3.1.4.14.8.1
L96.2.43.4.12.6.1.8.1
L96.2.43.4.15.8.1
L96.2.44.4.11.8.1.12.1
L96.2.48.48.1
L96.2.71.6.1.16.1
L96.2.73.3.1.16.1
L96.2.80.16.1
L98.7.14.14.1
L99.3.13.33.1
L100.2.16.5.3.10.3
L100.2.18.5.9.10.1
L100.2.2.50.1
L100.2.22.25.1
L100.2.29.5.5
L100.2.34.5.3.10.1
L100.2.4.10.4
L100.2.40.5.4
L100.2.5.5.4.10.3
L100.2.51.5.3
L100.2.7.5.10.10.1
L100.2.99
L100.5.20.20.1
L100.5.8.10.3
L104.2.100.4.1
L104.2.51.4.1.26.1
L104.2.52.52.1
L104.2.65.4.1.13.1
L108.2.1.3.33.6.2.18.1
L108.2.1.3.35.6.3.9.1
L108.2.10.3.31.6.1.18.1
L108.2.10.3.33.6.2.9.1
L108.2.10.3.40.6.1.9.1
L108.2.107
L108.2.12.3.29.6.3
L108.2.13.3.30.6.1.18.1
L108.2.13.6.3
L108.2.15.6.1.18.1
L108.2.17.3.29.6.2
L108.2.18.3.31.18.1
L108.2.18.3.33.6.1.9.1
L108.2.2.3.35.6.1.18.1
L108.2.2.3.37.6.2.9.1
L108.2.2.3.42.18.1
L108.2.2.54.1
L108.2.20.3.34.9.1
L108.2.21.3.1.6.2
L108.2.22.27.1
L108.2.27.3.33.9.1
L108.2.3.3.16.6.8
L108.2.3.3.32.6.2.18.1
L108.2.3.3.34.6.3.9.1
L108.2.3.3.39.18.1
L108.2.3.3.41.6.1.9.1
L108.2.34.3.29.6.1
L108.2.4.3.31.6.2.18.1
L108.2.4.3.33.6.3.9.1
L108.2.40.6.1
L108.2.8.3.30.6.2.18.1
L108.2.9.3.34.6.1.18.1
L108.2.9.3.36.6.2.9.1
L108.3.36.36.1
L108.3.37.6.2.18.1
L108.3.39.6.3.9.1
L108.3.4.6.11
L108.3.44.9.1.12.1
L112.2.104.8.1
L112.2.56.56.1
L112.2.75.4.3.28.1
L112.2.79.8.1.14.1
L112.2.89.7.1.8.1
L112.4.12.28.1
L116.2.115
L116.2.2.58.1
L116.2.23.29.1
L117.3.13.39.1
L120.2.116.4.1
L120.2.28.10.1.12.1
L120.2.30.6.1.20.1
L120.2.59.4.1.30.1
L120.2.60.60.1
L120.2.68.4.1.6.1.10.1
L120.2.70.3.1.4.1.10.1
L120.2.70.4.1.5.1.6.1
L120.2.74.4.1.15.1
L120.2.75.4.1.10.1
L120.2.75.4.1.6.1
L120.2.79.4.1.5.1
L120.2.87.3.1.4.1
L121.11.12
L124.2.123
L124.2.2.62.1
L124.2.22.31.1
L125.5.25.25.1
L126.3.20.6.1.21.1
L126.3.21.42.1
L126.3.23.6.1.7.1
L126.3.24.14.1
L128.2.3.4.11.8.13
L128.2.3.4.18.8.10
L128.2.3.4.25.8.7
L128.2.4.4.15.8.9.16.1
L128.2.4.4.22.8.6.16.1
L128.2.4.4.29.8.3.16.1
L128.2.4.4.36.16.1
L128.2.4.4.8.8.12.16.1
L128.2.5.4.10.8.11.16.1
L128.2.5.4.17.8.8.16.1
L128.2.5.4.24.8.5.16.1
L128.2.5.4.31.8.2.16.1
L128.2.5.4.8.8.14
L128.2.6.4.12.8.10.16.1
L128.2.6.4.19.8.7.16.1
L128.2.6.4.26.8.4.16.1
L128.2.6.4.33.8.1.16.1
L128.2.6.4.5.8.13.16.1
L128.2.64.64.1
L128.4.32.32.1
L128.8.16.16.1
L132.2.131
L132.2.15.6.1.22.1
L132.2.18.3.1.22.1
L132.2.18.6.1.11.1
L132.2.2.66.1
L132.2.22.33.1
L132.2.27.11.1
L132.2.42.6.1
L135.3.27.45.1
L135.3.32.9.1.15.1
L136.2.132.4.1
L136.2.67.4.1.34.1
L136.2.68.68.1
L136.2.83.4.1.17.1
L140.2.139
L140.2.17.10.1.14.1
L140.2.2.70.1
L140.2.21.7.1.10.1
L140.2.22.35.1
L140.2.25.5.1.14.1
L140.2.27.5.1.7.1
L140.2.34.14.1
L140.2.36.10.1
L140.2.38.7.1
L144.12.7
L144.2.103.8.1.18.1
L144.2.111.6.1.24.1
L144.2.113.3.1.24.1
L144.2.117.8.1.9.1
L144.2.136.8.1
L144.2.16.3.3.6.6.24.1
L144.2.44.3.11.12.2
L144.2.72.72.1
L144.2.74.3.4.6.6.8.1
L144.2.75.3.3.4.1.6.6.12.1
L144.2.76.3.12.6.4.8.1
L144.2.76.3.7.4.1.6.5.12.1
L144.3.48.48.1
L144.4.11.12.2
L144.4.36.36.1

Arguments

Value

  • All arrays are of class oa.

Details

The arrays and their properties are listed in the data frame oacat. The design names also indicate the number of runs and the numbers of factors: The first portion of each array name (starting with L) indicates number of runs, each subsequent pair of numbers indicates a number of levels together with the frequency with which it occurs. For example, L18.2.1.3.7 is an 18 run design with one factor with 2 levels and seven factors with 3 levels each. Apart from L18 and L36 (Taguchi, but also in the collection under different names), the source for the arrays is Warren Kuhfelds collection of parent arrays. It is possible to combine these with each other, or with Plackett-Burman, full or fractional factorial designs by nesting, as described by Warren Kuhfeld. This is not currently implemented. (The two Taguchi arrays are derived arrays, not parent arrays, and are therefore explicitly included.)

References

Hedayat, A.S., Sloane, N.J.A. and Stufken, J. (1999) Orthogonal Arrays: Theory and Applications, Springer, New York. Kuhfeld, W. (2009). Orthogonal arrays. Website courtesy of SAS Institute http://support.sas.com/techsup/technote/ts723.html.

See Also

See also FrF2, oa.design, pb