Learn R Programming

DoE.multi.response

The goal of DoE.multi.response is to construct experimental designs that follow the structure of well studied designs (such as CCDs), but extended to problems with multiple response variables where there is some prior information about the relationship between explanatory and response variables.

Example

This is a basic example which shows you how to solve a common problem:

We have a system with four response variables and 5 explanatory variables (factors). Suppose we know from previous process knowledge that:

  • Response 1 is related to factors 1, 2, and 3
  • Response 2 is related to factors 2, 3, and 4
  • Response 3 is related to factors 1, 3, and 5
  • Response 4 is related to factors 1 and 4

We can summarize this prior information with the following table:

factorsf1f2f3f4f5
Response 1XXX
Response 2XXX
Response 3XXX
Response 4XX

One assignment of unique factors for this example is:

x<-matrix(c(1,1,1,0,0,
            0,1,1,1,0,
            1,0,1,0,1,
            1,0,0,1,0), nrow = 4,byrow = TRUE)
library(DoE.multi.response)
#> Loading required package: DoE.wrapper
#> Loading required package: FrF2
#> Loading required package: DoE.base
#> Loading required package: grid
#> Loading required package: conf.design
#> 
#> Attaching package: 'DoE.base'
#> The following objects are masked from 'package:stats':
#> 
#>     aov, lm
#> The following object is masked from 'package:graphics':
#> 
#>     plot.design
#> The following object is masked from 'package:base':
#> 
#>     lengths
#> Loading required package: rsm
ufactors(x)
#> [1] 1 2 3 4 2

And a UF-CCD for this example is:

ufccd(x)
#> full factorial design needed
#> creating full factorial with 16 runs ...
#>       Block.ccd       X1       X2       X3       X4       X5
#> C1.17         1  0.00000  0.00000  0.00000  0.00000  0.00000
#> C1.18         1  0.00000  0.00000  0.00000  0.00000  0.00000
#> C1.13         1 -1.00000 -1.00000  1.00000  1.00000 -1.00000
#> C1.14         1  1.00000 -1.00000  1.00000  1.00000 -1.00000
#> C1.1          1 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000
#> C1.16         1  1.00000  1.00000  1.00000  1.00000  1.00000
#> C1.15         1 -1.00000  1.00000  1.00000  1.00000  1.00000
#> C1.8          1  1.00000  1.00000  1.00000 -1.00000  1.00000
#> C1.9          1 -1.00000 -1.00000 -1.00000  1.00000 -1.00000
#> C1.5          1 -1.00000 -1.00000  1.00000 -1.00000 -1.00000
#> C1.19         1  0.00000  0.00000  0.00000  0.00000  0.00000
#> C1.6          1  1.00000 -1.00000  1.00000 -1.00000 -1.00000
#> C1.2          1  1.00000 -1.00000 -1.00000 -1.00000 -1.00000
#> C1.3          1 -1.00000  1.00000 -1.00000 -1.00000  1.00000
#> C1.11         1 -1.00000  1.00000 -1.00000  1.00000  1.00000
#> C1.7          1 -1.00000  1.00000  1.00000 -1.00000  1.00000
#> C1.10         1  1.00000 -1.00000 -1.00000  1.00000 -1.00000
#> C1.4          1  1.00000  1.00000 -1.00000 -1.00000  1.00000
#> C1.12         1  1.00000  1.00000 -1.00000  1.00000  1.00000
#> C1.20         1  0.00000  0.00000  0.00000  0.00000  0.00000
#> S2.9          2  0.00000  0.00000  0.00000  0.00000  0.00000
#> S2.6          2  0.00000  0.00000  2.19089  0.00000  0.00000
#> S2.8          2  0.00000  0.00000  0.00000  2.19089  0.00000
#> S2.7          2  0.00000  0.00000  0.00000 -2.19089  0.00000
#> S2.12         2  0.00000  0.00000  0.00000  0.00000  0.00000
#> S2.1          2 -2.19089  0.00000  0.00000  0.00000  0.00000
#> S2.10         2  0.00000  0.00000  0.00000  0.00000  0.00000
#> S2.5          2  0.00000  0.00000 -2.19089  0.00000  0.00000
#> S2.2          2  2.19089  0.00000  0.00000  0.00000  0.00000
#> S2.4          2  0.00000  2.19089  0.00000  0.00000  2.19089
#> S2.11         2  0.00000  0.00000  0.00000  0.00000  0.00000
#> S2.3          2  0.00000 -2.19089  0.00000  0.00000 -2.19089

Copy Link

Version

Install

install.packages('DoE.multi.response')

Monthly Downloads

11

Version

0.1.0

License

MIT + file LICENSE

Maintainer

Wilmina Marget

Last Published

August 22nd, 2019

Functions in DoE.multi.response (0.1.0)

ufccd

This function generates the design matrix for a unique factor CCD.
ufactors

This function generates the unique factors for a unique factor CCD.