## Not run:
# ## Load and standardize (by column) data:
# d <- read.csv("data_file.csv")
# d <- apply(d, MAR = 2, FUN = scale)
# ## Set maximal number of clusters:
# K <- 10
# ## Set random seed:
# set.seed(1604)
# ## Get k-means-clustering solutions as starting values:
# start <- getStart(d = d, K = K)
# ## Proposal vector for fuzziness parameter m:
# m_proposal <- seq(1.1, 2.5, by = 0.1)
# ## Calculate results of fuzzy clustering:
# fkm_result <- wrapFKM(d = d, m = m_proposal, start = start)
# ## Plot cluster solution across varying m:
# plotNcluster(fkm = fkm_result)
# ## Plot distribution of typicality coefficients:
# plotTC(fkm_result[[1]])
# ## Plot pairwise cluster segregation comparisons:
# plotCS(fkm_result[[1]])## End(Not run)
Run the code above in your browser using DataLab