Learn R Programming

⚠️There's a newer version (1.4-1) of this package.Take me there.

DoseFinding (version 0.5-1)

Planning and Analyzing Dose Finding experiments

Description

The DoseFinding package provides functions for the design and analysis of dose-finding experiments (for example pharmaceutical Phase II clinical trials). It provides functions for: multiple contrast tests, fitting non-linear dose-response models, calculating optimal designs and an implementation of the MCPMod methodology.

Copy Link

Version

Install

install.packages('DoseFinding')

Monthly Downloads

4,470

Version

0.5-1

License

GPL-3

Maintainer

Bjrn Bornkamp

Last Published

March 26th, 2011

Functions in DoseFinding (0.5-1)

gFitDRModel

Generalized fitting of dose-response models to raw dose-response estimates
fitDRModel

Fit a non-linear regression model with linear covariates.
modelMeans

Calculate mean vectors for a given candidate set
MED.DRMod

Calculate MED for a DRMod object
plot.powerMM

Plot method for powerMM objects
planMM

Calculate planning quantities for MCPMod
powerMM

Calculate power for different sample sizes
plot.planMM

Plotting a planMM object
AIC.DRMod

Calculate AIC, BIC or log-likelihood for a DRMod object
mvtnorm.control

Control options for pmvt and qmvt functions
plot.fullMod

Plot method for fullMod objects
Dose-Response Models

Built-in dose-response models in DoseFinding
migraine

Migraine Dose Response data
getBnds

Calculates default bounds for non-linear parameters
calcCrit

Calculate design criterion for a specified design.
plot.MCPMod

Plot MCPMod model fits
getInit

Starting values for non-linear parameters.
getUpdDesign

Calculate Bayes estimates and optimal design for next cohort
ED.DRMod

Calculate EDp estimator for a DRMod object
biom

Biometrics Dose Response data
LP

Sensitivity analysis for misspecification of standardized model parameters in MCPMod
calcOptDesign

Function to calculate an optimal design
plot.LP

Plot method for LP objects
guesst

Calculate guesstimates based on prior knowledge
genDFdata

Simulate dose-response data
predict.MCPMod

Predict a MCPMod object.
gMCPtest

Generalized multiple contrast tests
rndDesign

Round a continuous design to integer values.
fit.control

Set control parameters for non-linear model fitting
DoseFinding-package

Package overview
powCalc

Calculate the power for the multiple contrast test
getPars

Calculate location and scale parameters
calcBayesEst

Calculates posterior estimates and posterior model probabilities for a set of candidate models.
MCPtest

Perform model-based multiple contrast test
MCPMod

Perform MCPMod analysis of a data set
IBScovars

Irritable Bowel Syndrome Dose Response data with covariates
DRMod and gDRMod methods

Methods for DRMod and gDRMod objects
powerScenario

Calculates the power for an planMM object under a particular alternative scenario
DoseFinding-internal

DoseFinding package internal functions
fullMod

Calculate location and scale parameters for candidate set of models
plotModels

Plot candidate models
critVal

Calculate critical value for multiple contrast test
bootMCPMod

Evaluate precision of dose estimate by nonparametric bootstrapping
getGrad

Calculate the gradient for the non-linear part of a DRMod object
sampSize

Sample size calculations for MCPMod